• Title/Summary/Keyword: inelastic lateral-torsional buckling

Search Result 29, Processing Time 0.026 seconds

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling

  • Thai, Huu-Tai;Kim, Seung-Eock;Kim, Jongmin
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, a conventional refined plastic hinge analysis is improved to account for the effects of local buckling and lateral-torsional buckling. The degradation of flexural strength caused by these effects is implicitly considered using practical LRFD equation. The second-order effect is captured using stability functions to minimize modeling and solution time. An incremental-iterative scheme based on the generalized displacement control method is employed to solve the nonlinear equilibrium equations. A computer program is developed to predict the second-order inelastic behavior of space steel frames. To verify the accuracy and efficiency of the proposed program, the obtained results are compared with the existing results and those generated using the commercial finite element package ABAQUS. It can be concluded that the proposed program proves to be a reliable and effective tool for daily use in engineering design.

Inelastic Buckling Behavior of Column and Beam-Column (기둥과 보-기둥 구조물의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.215-224
    • /
    • 2004
  • The inelastic lateral-torsional buckling behavior of the beam-columns and the columns was investigated in this paper. The energy method was deployed to study the inelastic buckling behavior of the beam-columns and columns. which requires the iterative solution of a fourth-order eigenproblem. Hitherto, the patterns of residual stress that satisfies the I-section manufacturing in Korea is not available, therefore the pattern of residual stress used in this study is a 'well-known' simplified pattern. The simplified pattern of the residual stresses is incorporated with the flow theory of plasticity to model the inelastic response. Firstly, this study investigates the inelastic lateral-torsional buckling behavior of the I-section beam-columns under a concentric axial compressive force and uniform bending, and the effect of residual stress on the inelastic buckling behavior of beam-columns is studied. The study is then extended to the inelastic buckling of the columns by eliminating a bending moment. These results are compared it with the design method in the Korean Steel Designers Manual (KSDM 1995). This study has found that design method in KSDM (1995) is excessively conservative.

Inelastic Buckling Behavior of I-Beam Under Uniform Bending (균일한 수직하중을 받는 I형강의 비탄성 좌굴거동에 의한 설계)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.61-72
    • /
    • 2004
  • This study investigated the inelastic lateral-torsional buckling of simply supported beams under a central concentrated load and a uniformly distributed load. A line-type finite element, method was incorporated with the "so-called" simplified and polynomial patterns of residual stresses. The effect of the load height was also considered in this study. The polynomial residual stresses assumed in this study was a quartic distribution in the flange and a parabolic distribution in the web. The inelastic lateral-torsional buckling of beam was analyzed with four different I-sections manufactured in Korea. Results obtained in this study were compared with KSDM(design method in the 1995 Korean Steel Designers' Manual). The design method in KSDM was found to be generally conservative with and without a sub-beam attached to the main beam, which acted as an intermediate restraint.

Lateral torsional buckling of doubly-symmetric steel cellular I-Beams

  • Mehmet Fethi Ertenli;Erdal Erdal;Alper Buyukkaragoz;Ilker Kalkan;Ceyhun Aksoylu;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.709-718
    • /
    • 2023
  • The absence of an important portion of the web plate in steel beams with multiple circular perforations, cellular beams, causes the web plate to undergo distortions prior to and during lateral torsional buckling (LTB). The conventional LTB equations in the codes and literature underestimate the buckling moments of cellular beams due to web distortions. The present study is an attempt to develop analytical methods for estimating the elastic buckling moments of cellular beams. The proposed methods rely on the reductions in the torsional and warping rigidities of the beams due to web distortions and the reductions in the weak-axis bending and torsional rigidities due to the presence of web openings. To test the accuracy of the analytical estimates from proposed solutions, a total of 114 finite element analyses were conducted for six different standard IPEO sections and varying unbraced lengths within the elastic limits. These analyses clearly indicated that the LTB solutions in the AISC 360-16 and AS4100:2020 codes overestimate the buckling loads of cellular beams within elastic limits, particularly at shorter span lengths. The LDB solutions in the literature and the Eurocode 3 LTB solution, on the other hand, provided conservative buckling moment estimates along the entire range of elastic buckling.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Buckling Analysis of Inelastic Steel Members (비탄성 강재 부재의 좌굴 해석)

  • Gil, Heung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.29-43
    • /
    • 2000
  • In this study, the computationally efficient inelastic buckling analysis program is developed to be used as the research tool in finding buckling strength of inelastic members. The program can determine buckling loads and buckled shapes of elastic and inelastic members which failed by flexural, lateral-torsional and/or local buckling. It can analyze singly and doubly symmetric I-shape members. In the program, the web of the member is modeled using the plate element and the flanges are modeled by beam elements. Multilinear isotropic hardening rule and the incremental theory of plasticity are used to simulate the inelastic stress-strain relationship from material tests. The program is verified using theoretical solutions and experimental results. The results from the program show good agreement with those from experiments and theory.

  • PDF

Lateral-Torsional Buckling Strength of I-girder with Corrugated Steel Webs under Linear Moment Gradient (선형 모멘트 구배가 작용하는 파형강판 I-거더의횡-비틂 좌굴 강도)

  • Moon, Jiho;Lim, Nam-Hyoung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.149-160
    • /
    • 2012
  • Corrugated steel plates have several advantages such as high resistance for shear without stiffeners, minimization of welding process, and high fatigue resistance. To take advantage of these benefits, several researchers have attempted to use corrugated steel plate as a web of I-girders. The lateral-torsional buckling is the major design aspect of such I-girders. However, lateral-torsional buckling of the I-girder with corrugated steel webs still needs to be investigated especially for a real loading condition such as non-uniform bending. This paper investigated the lateral-torsional buckling strength of the I-girder with corrugated steel webs under linear moment gradient by using finite element analysis. From the results, it was found that the buckling behavior of the I-girder with corrugated steel webs differed depending on the number of periods of the corrugation. Also, a simple equation for the moment gradient correction factor of the I-girder with corrugated steel webs was suggested. The inelastic lateral-torsional buckling strength of the I-girder with corrugated steel webs was then discussed based on current design equations for ordinary I-girders and the results of finite element analysis.

An Alternative Simplified Approach in Solving for the Inelastic Buckling Strengths of Singly Symmetric Non-Compact Stepped I-Beams (일축대칭 비조밀 스텝 I형보의 비탄성 좌굴강도 산정을 위한 단순방법)

  • Alolod, Shane;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.123-134
    • /
    • 2019
  • This paper proposed a new design equation for the inelastic lateral torsional buckling (LTB) of singly symmetric stepped I-beams with non-compact flange sections. The proposed equation was generated using a finite element program, ABAQUS, and a statistical program, MINITAB. The parameters used were the stepped beams parameters; ${\alpha}$, ${\beta}$, and ${\gamma}$ and the length-to-height ratio ($L_b/h$) of the beam. The proposed equation was further validated by means of experimental test, where beams were subjected to four-point bending and supported by roller and lateral braces near the end supports. In addition, finite element models were simulated using the same parameters used in the experimental test to verify the results of the test conducted. It was proved that LTB capacity calculated from the proposed equation is accurate and conservative in comparison with the yielded values from the FEM and actual test, making it a reliable and safe approach in calculating the buckling capacities of singly symmetric stepped beams with non-compact flange sections.