• 제목/요약/키워드: inelastic displacement response

검색결과 111건 처리시간 0.017초

표준학교건물의 3차원 비탄성거동에 대한 이력모델의 영향 (3-Dimensional Inelastic Behavior of Standard School Building with Various Hysteresis Models)

  • 윤태호
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2917-2923
    • /
    • 2015
  • 본 논문은 내진성능평가를 위해 사용되는 비탄성해석의 신뢰도와 정확도에 있어 결정적인 영향을 미치는 다양한 이력모델의 특성과 구조물의 내진거동에 미치는 영향을 분석하고자 한다. 연구대상은 표준학교건물로서 우리나라 규준에 맞는 인공지진 가속도 3가지를 사용하여 4가지의 이력모델을 적용하여 3차원 시간이력해석을 수행하였다. 비탄성해석을 통해 층전단력, 층간변위비, 층변위를 비교하고 힌지의 발생 상태를 파악하고 이력모델이 건물의 비탄성거동에 미치는 영향을 분석하였다. 연구 결과, 층전단력은 이력모델에 따라 최대 27%의 차이를 보이고, 층간변위비는 최대 30%의 차이가 나타났다. 장단변방향 모두에서 층전단력과 층간변위비는 최대값이 수정다케다모델에서 나타나 안전율 향상을 기대할 수 있을 것으로 판단된다. 층전단력의 최소값은 장단변방향 모두에서 클러프모델에서, 층간변위비는 장변방향은 다케다모델, 단변방향은 클러프모델에서 나타났고 이 경우 안전율이 낮아질 것으로 사료된다.

장주기구조물의 탄소성응답특성을 고려한 지진안전성 평가 (Seismic Safety Assessment of Long Period Structures Base on Elastic/Inelastic Response Characteristics)

  • 방명석
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.52-58
    • /
    • 2011
  • 지진별 특성이 사회간접시설에 미치는 영향을 평가하는 것은 내진성능의 향상을 위해 중요한 검토사항이다. 이 연구에서는 근거리 및 원거리 지진의 특성을 고려하여 장주기 골조구조물의 구조거동을 합리적으로 평가하는 방법을 비교분석하였다. 이를 위해서 입력지진동의 영향을 명확하게 반영할 수 있는 대상구조물을 선정하여 탄성 및 비탄성 시간이력해석을 수행하였다. 수치해석결과를 바탕으로 지진특성에 따른 전단력, 모멘트, 가속도 및 변위응답의 분포양상을 검토하고 차이점을 분석하였다. 또한 대상구조물의 비탄성 거동을 파악하기 위해서 소성힌지의 발생순서를 모사운용하여 붕괴발생모드를 해석하였다. 이 연구결과는 장주기 골조구조물의 내진안전성 평가를 위한 효율적인 방법을 제시하고 근거리 지진의 안전성에 미치는 영향을 분석하였다.

지진에 대한 강구조물의 피로손상도 추정법 (Fatigue Damage Assessment for Steel Structures Subjected to Earthquake)

  • 송종걸;윤정방;이동근
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

EQS 면진장치의 항복 후 강성을 고려한 면진 원전구조물의 지진응답 (Seismic Responses of Seismically Isolated Nuclear Power Plant Structure Considering Post-Yield Stiffness of EQS Bearing)

  • 김병수;송종걸
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.319-329
    • /
    • 2016
  • The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.

Preliminary design and inelastic assessment of earthquake-resistant structural systems

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.297-313
    • /
    • 2007
  • A preliminary performance-based seismic design methodology is proposed. The top yield displacement of the system is computed from these of the components, which are assumed constant. Besides, a simple procedure to evaluate the top yield displacement of frames is developed. Seismic demands are represented in the form of yield point spectra. The methodology is general, conceptually transparent, uses simple calculations based on first principles and is applicable to asymmetric systems. To consider a specific situation two earthquake levels, occasional and rare are considered. The advantage of an arbitrary assignment of strength to the different components to reduce eccentricities and improved the torsional response of the system is addressed. The methodology is applied to an asymmetric five story building, and the results are verified by push-over analysis and non linear dynamic analysis.

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

A multimodal adaptive evolution of the N1 method for assessment and design of r.c. framed structures

  • Lenza, Pietro;Ghersi, Aurelio;Marino, Edoardo M.;Pellecchia, Marcello
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.271-284
    • /
    • 2017
  • This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with inplan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

기계학습 기반 강 구조물 지진응답 예측기법 (Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.