• 제목/요약/키워드: industrial waste

검색결과 1,613건 처리시간 0.021초

시장개방(市場開放)과 국내기업(國內企業)의 구조조정(構造調整) (Structural Adjustment of Domestic Firms in the Era of Market Liberalization)

  • 성소미
    • KDI Journal of Economic Policy
    • /
    • 제13권4호
    • /
    • pp.91-116
    • /
    • 1991
  • 경제(經濟)의 개방화(開放化) 및 산업구조(塵業構造)의 고도화(高度化)가 진전되면서 국내기업들은 주력사업의 성장이 감퇴하는 구조변화(構造變化)에 직면하게 된다. 극단적인 경우에 도산(倒産)이나 폐업(廢業)을 단행하는 국내 기업들도 있을 것이다. 그러나 보다 우월한 적응능력을 가진 대부분의 대기업이나 중견기업들은 고임금(高賃金)과 현재의 기술여건(技術與件)에서 경쟁우위를 확보할 수 있는 영역(market niches)을 찾아 합리화 및 고부가가치화, 제품 및 시장다각화 등 신축적인 사업조정(事業調整)을 통해 수익성이 낮은 기존사업의 비중을 점차적으로 줄이면서 고수익성(高收益性) 사업(事業)으로 전환(轉換) 할 것이다. 사업구조 조정과정에서 기업(企業)은 단기적으로는 기존의 주력사업 내에서 경영합리화 및 감량경영을 통해 비용(費用)을 절감(節減)하고 제품의 고부가가치화(高附加價値化)를 추구하는 동시에 장기적으로는 사업구조 재편성을 목표로 기존의 우위요소를 최대한 활용하면서 새로운 우위요소(優位要素) 창출(創出)을 위해 기업의 전략구상, 조직 및 기업문화면에서의 구조전환을 시도하게 된다. 그러나 기업의 발상(發想), 조직구조(組織構造), 조직문화(組織文化)는 환경변화만큼 신속히 일어나지 않는다. 동일한 환경, 동일한 산업 내에서도 성공하는 기업이 있고 실패하는 기업이 있는 것처럼 환경변화에 대한 정확한 인식(認識)과 성공적인 전략(戰略)의 수립 및 실행은 기업들의 체계적인 노력여하에 따라 다르게 나타난다. (企業)의 구조전환(構造轉換)은 국가경제의 발전방향, 업종의 실태와 전망에 관한 정보에 기반하여 장기계획하(長期計劃下)에 기업의 축적된 경영자원을 활용하는 방향으로 이루어져야 한다. 기업이란 주주(株主), 경영자(經營者), 근로자(勤勞者) 등 이익집단간의 이해관계(利害關係)가 균형을 이루면서 발전해 나가는 조직이라는 새로운 인식(認識)에 기반하여 기업은 합리적 노사관계의 정착에 노력하고 정부(政府)는 경쟁(競爭)을 통한 기업체질 강화라는 기본방침하(基本方針下)에 재래산업(在來産業)의 전환비용(轉換費用)을 줄이고 신규사업(新規事業)의 창출(創出)을 뒷받침하는 제도개선(制度改善)을 해 나가야 한다.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

낙동강 하류수질의 계절적 변화 (Seasonal Variations of Water Quality in the Lower Part of the Nagdong River)

  • 김용관;심혜경;조학래;유선재
    • 한국수산과학회지
    • /
    • 제17권6호
    • /
    • pp.511-522
    • /
    • 1984
  • 낙동강 하류 수계는 농수산업을 비롯하여 각 산업의 용수 뿐만아니라 400만 부산시민의 상수 급수원으로서도 대단히 중요하다. 본 수계의 효율적인 활용을 위하여 하구언을 축조하고 있다. 그래서 본 연구는 하구언 설치 이전과 이후의 수질 변화에 대한 기초재료를 얻기 위하여 1983년 8월부터 1984년 7월까지 계절마다 2회씩 모두 8회에 걸쳐 15개 지점에서 총 시료 120개를 취하여 분석하였다. 이들 시료에 대한 수온, pH, 염소 ion 및 염분도, 화학적 산소 요구량, 전기전도도, 영양염류, 위생지표세균, microflora에 대한 실험 결과를 요약하면 다음과 같다. 1. 수온의 연간변화는 $-1.5{\sim}29.0^{\circ}C$로 컸으며, 봄철의 수온은 $10{\sim}15^{\circ}C$로서 겨울철보다 약 $10^{\circ}C$ 상승하였고, 가을철의 수온은 전 지점에서 $20^{\circ}C$ 부근으로 매우 안정되었다. 여름철에는 기온의 상승에 따라 $21{\sim}29^{\circ}C$로 높았다. 2. pH의 연간변화는 $6.68{\sim}8.50$이었으며, 평상시의 pH는 상부수역에서 하구쪽으로 향할수록 점증하였으며, 하구수역에서는 8에 가까웠다. 그러나 강우량이 많았던 직후에는 오히려 상부수역이 높고 하구수역이 낮아지는 반대현상이었다. 3. 염소 ion 농도의 변화범위는 $7.4{\sim}l.020.5$ mg/l로 지점별 차가 심하였다. 또, 염분또는 $1.05{\sim}33.01\%$로 넓은 범위로 분포되었다. 상부에 녹산 수문이 있는 제3수로는 $25.76{\sim}31.58\%0$으로 육수나 하천수의 영향을 많이 받고 있는 제1, 2수로보다 높은염도를 나타내며 안정되어 있다. 4. 화학적 산소 요구량의 변화범위는 $1.45{\sim}14.94$ mg/l였으며, 상부, 중부수역과 각 수로의 기점은 5mg/l 이상이었고, 하구수역은 수산 2급 기준치인3 ppm을 모두 초과하였다. 5. 전기전도도의 변화범위는 $1.360{\times}10^2{\sim}5.650{\times}10^4{\mu}{\mho}/cm$였으며, 상부수역에서 보다 하구수역에서 월등히 높았으며 강우량이 많을시에는 전 수역에서 낮은 값으로 나타났다. 6. 영양염류의 년중 변화범위는 $NO_2-N\;:\;0.008{\sim}0.040$ mg/l, $NO_3-N\;:\;0.038{\sim}5.253$ mg/l, $NH_4-N\;:\;0.100{\sim}2.685$ mg/l, $PO_4-P\;:\;0.003{\sim}0.084$ mg/l, $SiO_2-Si\;:\;0.154{\sim}6.123$mg/l였으며, 각종 염류는 일반적으로 상부, 중부수역에서 높은 농도였으나, 강우량에 육수나 강수에 의해 운반되어 하구수역에서 농도가 높아진다. 특히 하구수역에서 질소, 인화합물이 20년전에 비하여 $2{\sim}3$배 증가되고 있어 이차적인 환역오염이 우려 된다. 7. 대장균군 최확수의 분포범위는 $7.3{\sim}460,000/100ml$였으며, 금곡에서 을숙도 구간인 중부수역에서의 기하평균치는 $3,476{\sim}34,700/100ml$으로 극심한 오염도를 나타내었다. 이 수질의 여파와 장림천 괴정천에서 유입되는 오수로 제1수로의 수질은 $1.100{\sim}460,000/100ml$로 제 2수로 보다 5배나 심하게 오염되어 있었다. 분편계대장균 최확수의 분포범위는 $3.6{\sim}460,000/100ml$였으며, 대장균군에서와 같은 양상이었다. 장구균 최확수는 $0{\sim}46,000/100ml$의 분포범위로 분편계대장균과 같은 양상이었다. 8. 대장균군으로 분리 동정된 총 452균주중에서 Escherchia coli group은 127 균주로 $28\%$, Citrobacter freundii group은 82 균주로 $18\%$, Enterobacter aerogenes group이 141균주, $31\%$로 제일 많았으며, 분류되지 않은것이 $22\%$ 정도였다. 9. 생균수의 연간 변화폭은 $<30{\sim}1.2{\times}10^5/ml$였으며, 각 수역별로 위생지표세균이 변화하였던 것과 같은 양상이었다. 10. 본 수계에서 분리 동정된 세균 총 659 균주중에서 Pseudomonas 속이 279 균주($42\%$)로서 제일 많았으며, Flavebacterium cytophaga 속이 131균주($20\%$), Moraxella속이 72균주($12\%$) 순이었으며, Bacillus 속이 $0.3\%$으로 제일 낮은 빈도를 나타내었다.

  • PDF