• Title/Summary/Keyword: industrial networks

Search Result 1,232, Processing Time 0.028 seconds

A Management for IMS Network Using SDN and SNMP (SDN과 SNMP를 이용한 IMS 네트워크 관리)

  • Yang, Woo-Seok;Kim, Jung-Ho;Lee, Jae-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.694-699
    • /
    • 2017
  • In accordance with the development of information and communications technology, a network user has to be able to use quality of service (QoS)-based multimedia services easily. Thus, information and communications operators began to focus on a technique for providing multimedia services. The IP Multimedia Subsystem (IMS) is a platform based on Internet Protocol (IP) as a technology for providing multimedia services and application services. The emerging 5G networks are described as having massive capacity and connectivity, adaptability, seamless heterogeneity, and great flexibility. The explosive growth in network services and devices for 5G will cause excessive traffic loads. In this paper, software-defined networking (SDN) is applied as a kind of virtualization technology for the network in order to minimize the traffic load, and Simple Network Management Protocol (SNMP) is used to provide more efficient network management. To accomplish these purposes, we suggest the design of a dynamic routing algorithm to be utilized in the IMS network using SDN and an SNMP private management information base (MIB). The proposal in this paper gives information and communications operators the ability to supply more efficient network resources.

Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures (심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.7-14
    • /
    • 2021
  • Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data (Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석)

  • Lee, Jong-Sin;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.434-439
    • /
    • 2019
  • Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.

Critique of the Revitalization Trajectory of Bilbao (스페인 빌바오의 지역발전 재생 경로)

  • Kim, Kyoung-Hwan;Moon, Seung-Hee;Jung, Hye-Yoon;Hong, Jin-Ki
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.258-273
    • /
    • 2019
  • Bilbao, Spain, made a mark as a example of the regional revitalization by culture and tourism. Korean Government have a perspective that culture and tourism could be an alternative to the regional crisis of manufacturing in 2018. The main purpose of this study is to analyze the locational specificity and the revival strategies for the regional development of Bilbao in a structural context. This could provide implications to the regional crisis of Korea. The main results are summarized as follows. Firstly, the local government of Bilbao has taken an active role, using not only its political and financial autonomy but also its locational advantage as an important nodal region of transnational trade networks in Europe. Secondly, Bilbao was able to sustain its regional revitalization initiatives for a long period by facilitating public-private partnership system. Finally, despite the effectiveness of the mega project and place marketing, low job security and the polarization of the service sector have emerged as a problem at the same time. Still, the deindustrialization of Bilbao could be possible due to the various services including knowledge-based services and financial services as well as culture and tourism.

Binary classification of bolts with anti-loosening coating using transfer learning-based CNN (전이학습 기반 CNN을 통한 풀림 방지 코팅 볼트 이진 분류에 관한 연구)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.651-658
    • /
    • 2021
  • Because bolts with anti-loosening coatings are used mainly for joining safety-related components in automobiles, accurate automatic screening of these coatings is essential to detect defects efficiently. The performance of the convolutional neural network (CNN) used in a previous study [Identification of bolt coating defects using CNN and Grad-CAM] increased with increasing number of data for the analysis of image patterns and characteristics. On the other hand, obtaining the necessary amount of data for coated bolts is difficult, making training time-consuming. In this paper, resorting to the same VGG16 model as in a previous study, transfer learning was applied to decrease the training time and achieve the same or better accuracy with fewer data. The classifier was trained, considering the number of training data for this study and its similarity with ImageNet data. In conjunction with the fully connected layer, the highest accuracy was achieved (95%). To enhance the performance further, the last convolution layer and the classifier were fine-tuned, which resulted in a 2% increase in accuracy (97%). This shows that the learning time can be reduced by transfer learning and fine-tuning while maintaining a high screening accuracy.

A Study on the Analysis of R&D Trends and the Development Plan of Electronic Attack System (전자공격체계 연구개발 동향 분석과 발전방안에 대한 연구)

  • Sim, Jaeseong;Park, Byoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • An electronic attack (EA) system is an essential weapon system for performing electronic warfare missions that contain signal tracking and jamming against multiple threats using electromagnetic waves, such as air defense radars, wireless command and communication networks, and guided missiles. The combat effectiveness can be maximized, and the survivability of militarily protecting combat power can be enhanced through EA mission operations, such as disabling the functions of multiple threats. The EA system can be used as a radio frequency jamming system to respond to drone attacks on the core infrastructure, such as airports, power plants, and communication broadcasting systems, in the civilian field. This study examined the criteria for classification according to the electronic attack missions of foreign EA systems based on an aviation platform. The foreign R&D trends by those criteria were investigated. Moreover, by analyzing the R&D trends of domestic EA systems and future battlefields in the domestic security environments, this paper proposes technological development plans of EA systems suitable for the future battlefield environments compared to the foreign R&D trends.

Human Skeleton Keypoints based Fall Detection using GRU (PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지)

  • Kang, Yoon Kyu;Kang, Hee Yong;Weon, Dal Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • A recent study of people physically falling focused on analyzing the motions of the falls using a recurrent neural network (RNN) and a deep learning approach to get good results from detecting 2D human poses from a single color image. In this paper, we investigate a detection method for estimating the position of the head and shoulder keypoints and the acceleration of positional change using the skeletal keypoints information extracted using PoseNet from an image obtained with a low-cost 2D RGB camera, increasing the accuracy of judgments about the falls. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion-analysis method. A public data set was used to extract human skeletal features, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than a conventional, primitive skeletal data-use method.