• Title/Summary/Keyword: industrial manufacturing robot

Search Result 189, Processing Time 0.024 seconds

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Research on the Replacement of LiDAR for AMR to Minimize Production Lags (공정 지연 최소화를 위한 AMR의 LiDAR 교체 방법에 대한 연구)

  • Ahn, Kyeun;Cheong, Hee-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1545-1550
    • /
    • 2022
  • In this research, a method for minimizing the replacement time of AMR (Autonomous Mobile Robot), which is used in various industrial groups such as logistics and manufacturing, was studied in the event of a LiDAR failure. In this regard, a general LiDAR exchange process was defined and a new exchange process based on the newly designed jig, which is mounted on the AMR, for the quick change of LiDAR was proposed. The experiment is conducted using commercialized AMR which was developed for application in the factory of an automobile manufacturing company. It was confirmed that LiDAR can be replaced and aligned within 24 minutes when the new exchange process is employed, which is about 76% or more shorter than the general LiDAR exchange process. As a result, we can minimize AMR downtime and overall process delays by applying the proposed process.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF

The Back-bead Prediction Comparison of Gas Metal Arc Welding (아크 용접의 이면비드 예측 비교)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.81-87
    • /
    • 2007
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. However, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis and artificial neural network were used as the research methods. And, the results of two prediction methods were compared and analyzed.

Task-Sequencing Design for the FMC Transfer Robot Using Traveling Salesman Problem (외판원 문제(TSP)를 이용한 FMC 반송 로봇의 작업순서 설계)

  • Kim, Woo-Kyun;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.574-577
    • /
    • 2009
  • 본 논문은 외판원 문제(TSP: Traveling Salesman Problem)를 이용하여 로봇중심의 FMC(Flexible Manufacturing Cell)에서 반송 로봇의 작업순서를 설계하는 방법을 제시하였다. 이를 위해, 먼저 다수의 설비와 반송 로봇으로 구성된 대표적인 로봇 중심의 FMC를 가상으로 설계한 후, 실험계획법을 이용하여 다양한 조건에서의 주요 반응변수들의 인과관계를 규명하였다. 실험결과, 처리량, 반송로봇의가동률, 그리고 Buffer의 평균 대기 작업물의 수가 주요 반응변수들로 선정되었으며, 이를 기반으로 순서기반 조합최적화 문제인 TSP로 로봇 작업순서를 설계하였다. 제안한 방법과 기존의 방법을 비교하기 위해서 시뮬레이션을 수행 한 결과 제안된 TSP 방법이 기존의 방법 보다 반송 로봇의 교착 (Deadlock) 상태를 방지하여 처리량 등 주요 반응변수들 모두를 향상 시키는 결과를 가져왔다. 더불어,이 방법은 본 연구에서 제시한 FMC 뿐 아니라 반도체나 LCD(Liquid Crystal Display) 생산 공정과 같이 반송 로봇에 의해 구성되어 있는 장치 산업분야에 적용가능하다는 측면에서 큰 효과가 기대된다.

  • PDF

Feature extraction for part recognition system of FMC (FMC의 부품인식을 위한 형상 정보 추출에 관한 연구)

  • 김의석;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.892-895
    • /
    • 1992
  • This paper presents a methodology for automatic feature extraction used in a vision system of FMC (flexible Manufacturing Cell). To implement a robot vision system, it is important to make a feature database for object recognition, location, and orientation. For industrial applications, it is necessary to extract feature information from CAD database since the detail information about an object is described in CAD data. Generally, CAD description is three dimensional information but single image data from camera is two dimensional information. Because of this dimensiional difference, many problems arise. Our primary concern in this study is to convert three dimensional data into two dimensional data and to extract some features from them and store them into the feature database. Secondary concern is to construct feature selecting system that can be used for part recognition in a given set of objects.

  • PDF

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.