• Title/Summary/Keyword: industrial classification

Search Result 1,455, Processing Time 0.161 seconds

A Proposal for a New Industrial Classification System by Service Economy Perspective (서비스경제 관점의 산업분류체계 개선 제안)

  • Chae, Jongdae;Kim, Hyunsoo
    • Journal of Service Research and Studies
    • /
    • v.8 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • The Industrial Classification is a systematic taxonomy of industrial activities and the Standard Industrial Classification is used in all country by their own a consistent classification method. Therefore, it is employed to analyze current status of industry affairs using statistical investigations in terms industrial activities for making industrial policies and to compare industrial activity among countries. Since the Second Industrial Revolution, the need for the homogenous standard of industrial classification among countries emerged as the economic and industrial exchanges between the countries have became more active. In 1940, Colin Clark who british economist divided the industry into the first (primitive), second (processed), and third (service) industries. Based on this, the United Nations Office for Statistics (UNSD) established International Standard Industry Classification (ISIC) in 1948, which most countries invoke it. ISIC(International Standard Industry Classification) and the standard industry classifications of countries have reached the present after several revisions since the enactment of the Act. In the 2000s, the standard industry classification is amended to reflect the emergence of new industries and changes in industrial structure, mainly featuring the creation and segmentation of sections in the tertiary industry domains. It also shows that primary and secondary sectors are shifting to tertiary industry. In this study, the causes of these common phenomena are systematically identified and the problems present classification systems have been analyzed. Also proposed is the direction of formation of the industrial classification system from a service economy point of view and the conceptual model of the new classification system. In the future, it is necessary to validate the proposed model through this study and to carry out various new classification system studies.

A Study on the Method of Security Industrial Classification through the Review of Industrial Special Classification (국내산업 특수분류방법을 고려한 보안산업 분류방향 연구)

  • Shin, Eunhee;Chang, Hangbae
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • The basis of economic statistics for evaluating the security industry's growth and inter-industry impacts is to create a standardized industry classification along with the scope of the security industry. The industrial classification should be written in such a way that it complies with and complies with the standards of the international and domestic standardized standard industrial classifications. Representative classifications of information security, physical security, and convergence security as well as classification of products and services related to security at present are not in line with the criteria of industrial classification based on the characteristics of production activities for products. The results of the convergence security industrial classification study are also consumer-oriented classification, which differs from the supplier-centric classification officially used in statistics, law, and policy enforcement in the present country. In this study, we first summarized the criteria of Korean and international industrial classification, and then examined whether the current classification of security meets these criteria. Next, to examine the classification directions of newly formed industries such as security industry, we reviewed some cases of domestic industrial special classification and types, and proposed the industrial classification criteria and direction of the security industry on the basis of them.

Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification (전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.

A Study of A Cultural Classification and A Culture Contents Industrial Classification (문화분류와 문화콘텐츠산업분류에 관한 연구)

  • Ahn, In-Ja
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.17 no.2
    • /
    • pp.5-22
    • /
    • 2006
  • A cultural classification and a culture contents industrial classification are the basic tools for cultural policies, cultural supporting, cultural statistics, and evaluations and there is a cyclic processes among them. This study finds out the varieties and short time changes of cultural categorization in laws, statistics, indexes, evaluations, research reports. As a result, colon style new cultural classification is suggested which used networks, media, genre, and cultural comparts as principles.

Design of One-Class Classifier Using Hyper-Rectangles (Hyper-Rectangles를 이용한 단일 분류기 설계)

  • Jeong, In Kyo;Choi, Jin Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.439-446
    • /
    • 2015
  • Recently, the importance of one-class classification problem is more increasing. However, most of existing algorithms have the limitation on providing the information that effects on the prediction of the target value. Motivated by this remark, in this paper, we suggest an efficient one-class classifier using hyper-rectangles (H-RTGLs) that can be produced from intervals including observations. Specifically, we generate intervals for each feature and integrate them. For generating intervals, we consider two approaches : (i) interval merging and (ii) clustering. We evaluate the performance of the suggested methods by computing classification accuracy using area under the roc curve and compare them with other one-class classification algorithms using four datasets from UCI repository. Since H-RTGLs constructed for a given data set enable classification factors to be visible, we can discern which features effect on the classification result and extract patterns that a data set originally has.

Missing Value Imputation based on Locally Linear Reconstruction for Improving Classification Performance (분류 성능 향상을 위한 지역적 선형 재구축 기반 결측치 대치)

  • Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.276-284
    • /
    • 2012
  • Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining (효과적인 산업재해 분석을 위한 텍스트마이닝 기반의 사고 분류 모형과 온톨로지 개발)

  • Ahn, Gilseung;Seo, Minji;Hur, Sun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.179-185
    • /
    • 2017
  • Accident analysis is an essential process to make basic data for accident prevention. Most researches depend on survey data and accident statistics to analyze accidents, but these kinds of data are not sufficient for systematic and detailed analysis. We, in this paper, propose an accident classification model that extracts task type, original cause materials, accident type, and the number of deaths from accident reports. The classification model is a support vector machine (SVM) with word occurrence features, and these features are selected based on mutual information. Experiment shows that the proposed model can extract task type, original cause materials, accident type, and the number of deaths with almost 100% accuracy. We also develop an accident ontology to express the information extracted by the classification model. Finally, we illustrate how the proposed classification model and ontology effectively works for the accident analysis. The classification model and ontology are expected to effectively analyze various accidents.

An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation (가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기)

  • Kim, Do Gyun;Choi, Jin Young;Ko, Jeonghan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

A Wavelet based Feature Selection Method to Improve Classification of Large Signal-type Data (웨이블릿에 기반한 시그널 형태를 지닌 대형 자료의 feature 추출 방법)

  • Jang, Woosung;Chang, Woojin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • Large signal type data sets are difficult to classify, especially if the data sets are non-stationary. In this paper, large signal type and non-stationary data sets are wavelet transformed so that distinct features of the data are extracted in wavelet domain rather than time domain. For the classification of the data, a few wavelet coefficients representing class properties are employed for statistical classification methods : Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Network etc. The application of our wavelet-based feature selection method to a mass spectrometry data set for ovarian cancer diagnosis resulted in 100% classification accuracy.