• Title/Summary/Keyword: inductive displacement sensor

Search Result 7, Processing Time 0.023 seconds

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

A Study on Analysis and Effect of Electronic Noise in an Inductive Displacement Sensor (유도형 변위 센서의 전기 노이즈 분석과 센서 성능에 미치는 영향 고찰)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.379-384
    • /
    • 2003
  • Noise is a problem in many electronic circuits and active control system. Arising from spuriously coupled noise from other circuits, it corrupts the signal of interest and introduces an uncertainty into information it contains. In this paper, re have researched noise characteristics of the inductive displacement sensor which has been designed. n first present basic concept and characteristics of magnetic field-coupled noise in the sensor output signal. Then, n are present relation noise and sensor performances. Finally, we concentrate low noise design of a sensor driver and a signal detection circuit.

  • PDF

Development of the Inductive Proximity Sensor Module for Detection of Non-contact Vibration (비접촉 진동 검출을 위한 유도성 근접센서모듈 개발)

  • Nam, Si-Byung;Yun, Gun-Jin;Lim, Su-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.61-71
    • /
    • 2011
  • To measure the fatigue of metallic objects at high speed vibration while non-contact precision displacement measurement on how to have a lot of research conducted. Noncontact high-speed vibration detection sensor of the eddy current sensors and laser sensors are used, but it is very expensive. Recently, High-speed vibrations detection using an inexpensive inductive sensor to have been studied, but is still a beginner. In this paper, a new design of an inexpensive inductive proximity sensor has been suggested in order to measure high frequency dynamic displacements of metallic specimens in a noncontact manner. Detection of the existing inductive sensors, detection, integral, and amplified through a process to detect the displacement noise due to weak nature of analog circuits and integral factor in the process of displacement detection is slow. The proposed method could be less affected by noise, the analog receive and high-speed signal processing is a new way, because AD converter (Analog to Digital converter) without using the vibration frequency signals directly into digital signals are converted. In order to evaluate the sensing performance, The proposed sensor module using non-contact vibration signals were detected while shaker vibration frequencies from 30Hz to 1,100 Hz at intervals of vibrating metallic specimens. Experimental results, Vibration frequency detection range of the metallic specimins within close proximity to contactless 5mm could be measured from DC to 1,100Hz and vibration amplitude of the resolution was $20{\mu}m$. Therefore, the proposed non-contact inductive sensor module for precision vibration detection sensor is estimated to have sufficient performance.

Modelling of a Ring-type Multi-pole Inductive Position Sensor Using Magnetic Circuit Theory (자기회로 이론을 이용한 링형 다극 유도형 변위센서의 모델링)

  • 김지미;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.

  • PDF

Ring-Shaped Inductive Sensor Design and Application to Pressure Sensing (환형 인덕티브 센서의 설계 및 압력센서로의 적용)

  • Noh, Myounggyu;Kim, Sunyoung;Baek, Seongki;Park, Young-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.995-999
    • /
    • 2015
  • Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

A study on a hot forging process monitoring for measurement of indirect forging force in flange bolt forming of titanium alloys (티타늄 합금 플랜지 볼트 성형에서의 단조력 간접 측정을 위한 열간 단조 공정 모니터링에 관한 연구)

  • Ha, Seok-Jae;Choi, Doo-Sun;Lee, Dong-Won;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2021
  • The objective of this study is to introduce the new possibility of sensing technology based on inductive displacement sensors to monitor the status of wheel position in the hot forging process. In order to validate effectiveness of proposed sensing technology, the indirect forging force measurement with displacement sensor was applied into a typical closed hot forging die-set used for the manufacturing of flange bolts. The locations to implement the displacement sensor were selected carefully by simulating forming process and static structural. From the measurement results of the forging force change during one hot forging cycle, it was found that the proposed monitoring system can provide useful information to understand the detailed behaviors of die-set in the closed hot forging process.

Control of Electromagnetic Accelermeter with Digital PWM Technique (서오보형 가속도계의 PMW 제어)

  • Kim, Jung-Han;Oh, Jun-Ho;Che, Woo-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.112-119
    • /
    • 1996
  • Among the various type of accelerometer, the servo rebalancing type accelermoter can be suitable for Inertial Navigation System, because of its high sensitivity and good response in low frequency. In this paper, we proposed a new technology to control inductive tuype accelerometer utilizing digital PWM method. The new developed digital PWM control has special design scheme for transmitting measurement value to outer device in its servo ollp. So it has no quantized error of transforming outputs of sensors to digital domain. The quantized error may make serious problem in INS system, because outputs of sensor are integrated once or twice by digital computer and it happens every sensor reading times. Therefore, in order to get the accurate information such as displacement, it is necessary to measure accurately the input current. In addition, Digital Signal Processing needs digital data transmission, digital PWM method is adaptive for this purpose. We realized a practical circuit for digital PWM control, analyzed the stability of the circuit, and designed the controller etc. In this study, we solved many practical problem for this application, and got out good results.

  • PDF