• Title/Summary/Keyword: induction bolt heating system

Search Result 2, Processing Time 0.018 seconds

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Analysis of Failure and Electrical Fire for Bolt Induction Heating System Using FTA (FTA를 이용한 볼트 유도가열시스템의 고장 및 전기화재 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Eom, Haneol;Kang, Moon-Soo;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • This paper presents a safety assessment method for FTA-based induction heating systems; the failures and causes of electrical fire are first analyzed for each part and module qualitatively, and methods to manage high probabilities of failure and electrical fire are considered, thereby improving the reliability of the induction heating system. The cumulative importance value (ACC) of the minimal cut set is drawn by setting failure as the top event, and STACK and SMPS are observed to account for about 70% of the induction heating system failures. Thus, intensively managing the basic events contained in the minimal cut set of failures for STACK and SMPS is expected to provide effective and stable operation of the induction heating system. When electrical fire is set as the top event, the STACK percentage is 90%. Accordingly, the current IGBT is changed to a FET to increase the applied voltage and prevent induction heating system failure, and a heat sink plane is installed to prevent FET heating caused by switching, thereby preventing an electrical fire. By classifying the parts and modules of the induction heating system in detail and by applying FTA based on actual failure rates and relevant data, more practical and reasonable results may be expected. Hence, continuous research must be conducted to ensure safety when using induction heating systems.