• Title/Summary/Keyword: inducible enzyme

Search Result 248, Processing Time 0.021 seconds

Isolation of $\beta$-1,4-D-arabinogalactanase Producing Strain and Enzyme Purification ($\beta$-1,4-D-arabinogalactanase 생산균주의 분리 및 효소정제)

  • 신해헌;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.687-694
    • /
    • 1995
  • Alkalophilic Bacillus sp. HJ-12 producing $\beta $-1, 4-D-arabinogalactanase was isolated from soil in the alkalic condition, pH 10.0. $\beta $-1, 4-D-arabinogalactanase was maximaly produced in the medium consisting of 2% soybean arabinogalactan (SAG), 0.5% yeast extract, 0.5% polypeptone, 0.5% NaCl, 0.1% K$_{2}$HPO$_{4}$, 0.02% MgSO$_{4}$$\cdot $7H$_{2}$O, 0.1% Na$_{2}$CO$_{3}$ under the aerobic condition (pH 8.2). $\beta $-1, 4-D-arabinogalactanase is inducible enzyme so that its activity has been increased 10 fold in the SAG medium than in the glucose medium. Through the ammonium sulfate precipitation, DEAE- Sephadex A-50 ion chromatography, and Sephadex G-75 gel chromatography procedures, this enzyme was purified with a single protein of 11% vield and 110 fold's purity. $\beta $-1, 4-D-arabinogalactanase is endo type enzyme producing ollgosaccharide from SAG.

  • PDF

Molecular characterization of lysine 6-dehydrogenase from Achromobacter denitrificans

  • Ruldeekulthamrong, Prakarn;Maeda, Sayaka;Kato, Shin-ichiro;Shinji, Nagata;Sittipraneed, Siriporn;Packdibamrung, Kanoktip;Misono, Haruo
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.790-795
    • /
    • 2008
  • An inducible lysine 6-dehydrogenase (Lys 6-DH), which catalyzes the oxidative deamination of the 6-amino group of L-lysine in the presence of $NAD^+$, was purified to homogeneity from Achromobacter denitrificans, yielding a homodimeric protein of 80 kDa. The enzyme was specific for the substrate L-lysine and $NAD^+$ served as a cofactor. The dimeric enzyme associated into a hexamer in the presence of 10 mM L-lysine. The $K_m$ values for L-lysine and $NAD^+$ were 5.0 and 0.09 mM, respectively. The lys 6-dh gene was cloned and overexpressed in E. coli. The open reading frame was 1,107 nucleotides long and encoded a peptide containing 368 amino acids with 39,355 Da. The recombinant enzyme was purified to homogeneity and characterized. Enzyme activities and kinetic properties of the recombinant enzyme were almost the same as those of the endogenous enzyme obtained from A. denitrificans. Crystals of the enzyme were obtained using the hanging drop method.

The Effects of Wood Rotting Fungi and Laccase on Destaining of Dyes and KP Bleaching Effluen

  • Cho, Nam-Seok;Park, J.M.;Choi, T.H.;Matuszewska, A.;Jaszek, M.;Grzywnowicz, K.;Malarczyk, E.;Trojanowski, K.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.72-79
    • /
    • 1999
  • The ability of several wood rotting fungi for decolorization of two anthracene derivatives, Carminic acid (CA) and Remazol brilliant blue R (RBBR), and hardwood KP bleaching liquor (BL) as well as laccase activities in these fungi were studied. The enzyme activity appeared exclusively in fungi destaining RBBR and CA, but in the case of BL, such relationship was not observed. The laccase enzyme was released into the decolorization media and its inducible (but not constitutive) forms shown destaining activity. The purified inducible forms of Kuehneromyces mutabilis and Pleurotus ostreatus laccase destained CA. Thus the possible differentiation between specificity of particular LAC forms was confirmed. In addition the nitrogen starvation induced both laccase and CA destaining activities, but the increase was higher for decolorization of CA than LAC activity. Probably LAC would be only partly responsible for decolorization of this dye. This results suggested that purified LACs decolorize CA, however its destaining activities were considerably lower than the activities on syringaldazine.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • LEE Haeng-Soon;KIM Kee-Yeun;KWON Suk-Yoon;KWAK Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21s1 century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Isolation of Microorganism Producing Chitinase for Chitooligosaccharides Production, Purification of Chitinase, and its Enzymatic Characteristics (Chitoologosaccharides 생산에 적합한 Chitinase를 분비하는 균주의 선별, Chitinase의 분리정제 및 반응특성)

  • 정의준;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.187-196
    • /
    • 1995
  • In order to produce fuctional chitooligosaccharides, a strain excreting mainly endo-type chitinase suitable for chitooligosaccharides production was newly screened and identified as Aspergillus fumigatus JC-19. The chitinase excretion was repressed in nutrient rich medium but stimulated by colloidal chitin indicating that the chitinase is inducible type enzyme. Maximum secretion of the enzyme was observed at pH 7.0 and 37$\circ$C . The growth and chitinase production patterns of Aspergillus fumigatus JC-19 showed that the cell growth reached maximum after 4-5 days with final chitinase concentration of 0.46 unit per ml. Excreted chitinase was purified by ammonium sulfate precipitation, colloidal chitin adsorption, anion exchange chromatography, and gel filtration, respectively, and measured M.W of 50 KDa. The enzyme reaction carried out both by crude and purified chitinase showed that the purified chitinase accumulated more chitooligosaccharides of 1-6 degree of polymerization than that of crude chitinase.

  • PDF

Anti-inflammatory Activity of Veronica peregrina

  • Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • Veronica peregrina (Scrophylariaceae) has been widely used as a Korean traditional medicine for the treatment of various pathological conditions including infection, hemorrhage and gastric ulcer. In the current study, we investigated the inhibitory effect of methanolic extracts of V. Peregrina (VPM) on the LPS-mediated nitric oxide (NO) production in mouse (C57BL/6) peritoneal macrophages. NO production was significantly down-regulated by the treatment of VPM dose dependently. To evaluate the mechanism of the inhibitory action of VPM on NO production, we performed iNOS enzyme activity assay and checked the change of inducible nitric oxide synthase (iNOS) levels by Western blotting. Although VPM did not affect iNOS enzyme activity, iNOS protein expression was attenuated by VPM indicating VPM inhibits NO production via suppression of iNOS enzyme expression. In addition, VPM attenuated the expression of another pro-inflammatory mediator such as cyclooxygenase-2 (COX-2) in a dose dependent manner. We also found that VPM can reduce trypsin-induced paw edema in mice. Based on this study, we suggest that V. peregrina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

A Sesquiterpene, Dehydrocostus Lactone, Inhibits the Expression of inducible Nitric Oxide Synthase and TNF$\alpha$ in LPS- Activated Macrophages

  • Lee, H.J.;Kim, N.Y.;D.H. Sohn;Lee, S.H.;J.H. Ryu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.176-176
    • /
    • 1998
  • An enhanced formation of nitric oxide (NO) is an important mediator of hypotention, peripheral vasodilation and vascular hyporeactivity to vasoconstrictor agents in endotoxaemia. And tumor necrosis factor (TNF${\alpha}$), as a primary mediator of circulatory shock has been known to induce inducible nitric oxide synthase (i-NOS), leading to excessive production of NO. We isolated two sesquiterpene lactone compounds from Saussurea lappa and their structures were elucidated as dehydrocostus lactone and costunolide. These compounds inhibit the production of both NO and TNF${\alpha}$ by LPS (1 $\mu\textrm{g}$/$m\ell$)-activated Raw 264.7 cells. NO was measured spectropho-tometrically as nitrite by the Griess reagent and TNF${\alpha}$ by ELISA. Dehydrocostus lactone (IC$\sub$50/ : 3.0 ${\mu}$M) and costunolide (IC$\sub$50/ : 4.5 ${\mu}$M) inhibited the production of NO in LPS-activated Raw 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. These compounds also decreased the TNF${\alpha}$ levels in LPS-activated system in vitro and in vivo.

  • PDF

Molecular Characterization of Cold-Inducible ${\beta}$-Galactosidase from Arthrobacter sp. ON14 Isolated from Antarctica

  • Xu, Ke;Tang, Xixiang;Gai, Yingbao;Mehmood, Muhammad Aamer;Xiao, Xiang;Wang, Fengping
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • A psychrotrophic bacterium, Arthrobacter sp. ON14, isolated from Antarctica, was shown to exhibit a high ${\beta}$-galactosidase activity at a low temperature. A genomic library of ON14 was constructed and screened for ${\beta}$-galactosidase genes on functional plates containing 5-bromo-4-chloro-3-indolyl-${\beta}$-D-galactopyranoside (X-gal) as the substrate. Two different ${\beta}$-galactosidase genes, named as galA, galB, were found in ON14. Computational analyses of the genes revealed that the encoded protein GalA belongs to family 2 of glycosyl hydrolysases and is a cold-active protein, whereas GalB belongs to family 42 of glycosyl hydrolysases and is a mesophilic protein. Reverse transcription analyses revealed that the expression of galA is highly induced at a low temperature ($4^{\circ}C$ ) and repressed at a high temperature ($28^{\circ}C$ ) when lactose is used as the sole carbon source. Conversely, the expression of galB is inhibited at a low temperature and induced at a high temperature. The purified GalA showed its peak activity at $15^{\circ}C$ and pH 8. The mineral ions $Na^+$, $K^+$, $Mg^{2+}$, and $Mn^{2+}$ were identified as enzyme activators, whereas $Ca^{2+}$ had no influence on the enzyme activity. An enzyme stability assay revealed that the activity of GalA is significantly decreased when it is incubated at $45^{\circ}C$ for 2 h, and all its activity is lost when it is incubated at $50^{\circ}C$.

Inducible Periplasmic Chromate Reducing Activity in Pseudomonas aeruginosa Isolated from a Leather Tannery Effluent

  • GANGULI, A.;TRIPATHI, A.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.355-361
    • /
    • 2001
  • A Chromate tolerant strain of Pseudomonas aeruginosa isolated from the effluent of a tannery showed significant enzymatic activity of chromate reduction. Cells grown in chromate-supplemented medium reduced 8 $\mu\textrm{g}$ chromate/mg protein/h in the presence of NADH/NADPH. The chromate reducing activity was inducible as cells pregrown in chromate showed higher chromate reduction. In contrast, the periplasmic fraction of cells gown in chromate reduce $75\%$ chromate in 4 h and the spheroplast fraction failed to do so, indicating that chromate reductase may be located in the periplasm. The presence of a 30 kDa protein in the periplasmic extracts of cells grown in the presence of chromate, but its absence of the protein in cells grown without chromate, points out a possible role of this protein in chromate reduction.

  • PDF

Inhibitors of Inducible Nitric Oxide Synthase Expression from Artemisia iwayomogi

  • Ahn, Hanna;Kim, Ji-Yeon;Lee, Hwa-Jin;Kim, Yong-Kyun;Ryu, Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.301-305
    • /
    • 2003
  • Nitric oxide (NO) is an important bioactive agent that mediates a wide variety of physiological and pathophysiological events. NO overproduction by inducible nitric oxide synthase (iNOS) results in severe hypotension and inflammation. This investigation is part of a study to discover new iNOS inhibitors from medicinal plants using a macrophage cell culture system. Two sesquiterpenes (1 and 2) were isolated from Artemisia iwayomogi (Compositae) and were found to inhibit NO synthesis ($IC_{50} 3.64 \mu g/mL and 2.81 \mu$g/mL, respectively) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Their structures were identified as 3-Ο-methyl-iso-secotanapartholide (1) and iso-secotanapartholide (2). Compounds 1 and 2 inhibited the LPS-induced expression of the iNOS enzyme in the RAW 264.7 cells. The inhibition of NO production via the down regulation of iNOS expression may substantially modulate the inflammatory responses.