• 제목/요약/키워드: induced earthquake

검색결과 385건 처리시간 0.028초

Review of earthquake-induced landslide modeling and scenario-based application

  • Lee, Giha;An, Hyunuk;Yeon, Minho;Seo, Jun Pyo;Lee, Chang Woo
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.963-978
    • /
    • 2020
  • Earthquakes can induce a large number of landslides and cause very serious property damage and human casualties. There are two issues in study on earthquake-induced landslides: (1) slope stability analysis under seismic loading and (2) debris flow run-out analysis. This study aims to review technical studies related to the development and application of earthquake-induced landslide models (seismic slope stability analysis). Moreover, a pilot application of a physics-based slope stability model to Mt. Umyeon, in Seoul, with several earthquake scenarios was conducted to test regional scale seismic landslide mapping. The earthquake-induced landslide simulation model can be categorized into 1) Pseudo-static model, 2) Newmark's dynamic displacement model and 3) stress-strain model. The Pseudo-static model is preferred for producing seismic landslide hazard maps because it is impossible to verify the dynamic model-based simulation results due to lack of earthquake-induced landslide inventory in Korea. Earthquake scenario-based simulation results show that given dry conditions, unstable slopes begin to occur in parts of upper areas due to the 50-year earthquake magnitude; most of the study area becomes unstable when the earthquake frequency is 200 years. On the other hand, when the soil is in a wet state due to heavy rainfall, many areas are unstable even if no earthquake occurs, and when rainfall and 50-year earthquakes occur simultaneously, most areas appear unstable, as in simulation results based on 100-year earthquakes in dry condition.

Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions

  • Kang, Lan;Ge, Hanbin;Magoshi, Kazuya;Nonaka, Tetsuya
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.575-589
    • /
    • 2019
  • The main focus of this study is to numerically investigate the influence of strong earthquake and tsunami-induced wave impact on the response and behavior of a cable-stayed steel bridge with large caisson foundations, by assuming that the earthquake and the tsunami come from the same fault motion. For this purpose, a series of numerical simulations were carried out. First of all, the tsunami-induced flow speed, direction and tsunami height were determined by conducting a two-dimensional (2D) tsunami propagation analysis in a large area, and then these parameters obtained from tsunami propagation analysis were employed in a detailed three-dimensional (3D) fluid analysis to obtain tsunami-induced wave impact force. Furthermore, a fiber model, which is commonly used in the seismic analysis of steel bridge structures, was adopted considering material and geometric nonlinearity. The residual stresses induced by the earthquake were applied into the numerical model during the following finite element analysis as the initial stress state, in which the acquired tsunami forces were input to a whole bridge system. Based on the analytical results, it can be seen that the foundation sliding was not observed although the caisson foundation came floating slightly, and the damage arising during the earthquake did not expand when the tsunami-induced wave impact is applied to the steel bridge. It is concluded that the influence of tsunami-induced wave force is relatively small for such steel bridge with large caisson foundations. Besides, a numerical procedure is proposed for quantitatively estimating the accumulative damage induced by the earthquake and the tsunami in the whole bridge system with large caisson foundations.

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.

복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가 (Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas)

  • 김한샘;선창국
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용 (Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area)

  • 김한샘;선창국;하익수
    • 한국지진공학회논문집
    • /
    • 제27권5호
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

Development of an earthquake-induced landslide risk assessment approach for nuclear power plants

  • Kwag, Shinyoung;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1372-1386
    • /
    • 2018
  • Despite recent advances in multi-hazard analysis, the complexity and inherent nature of such problems make quantification of the landslide effect in a probabilistic safety assessment (PSA) of NPPs challenging. Therefore, in this paper, a practical approach was presented for performing an earthquake-induced landslide PSA for NPPs subject to seismic hazard. To demonstrate the effectiveness of the proposed approach, it was applied to Korean typical NPP in Korea as a numerical example. The assessment result revealed the quantitative probabilistic effects of peripheral slope failure and subsequent run-out effect on the risk of core damage frequency (CDF) of a NPP during the earthquake event. Parametric studies were conducted to demonstrate how parameters for slope, and physical relation between the slope and NPP, changed the CDF risk of the NPP. Finally, based on these results, the effective strategies were suggested to mitigate the CDF risk to the NPP resulting from the vulnerabilities inherent in adjacent slopes. The proposed approach can be expected to provide an effective framework for performing the earthquake-induced landslide PSA and decision support to increase NPP safety.

Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming

  • Evren, Seyrek;Sadettin, Topcu
    • Geomechanics and Engineering
    • /
    • 제31권6호
    • /
    • pp.637-651
    • /
    • 2022
  • The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.

2축 동조 질량 감쇠기를 이용한 구조물의 진동 제어 연구 (A Study of the Structural Vibration Control Using a Biaxial Tuned Mass Damper)

  • 정태영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.473-481
    • /
    • 2000
  • Civil structures are becoming more flexible and lightly damped. When subjected to dynamic loads such as wind, earthquake and wave, vibration may be easily induced and lasted for lond duration. To suppress the wind-induced and earthquake-induced vibration of high-rise buildings, study on the development of a tuned mass damper has been carried out. Based on optimal design on passive tuned mass damper which is considered for a building subject to random excitations, a biaxial tuned mass damper was designed and developed. It is confirmed that the vibration levels of the test structure are reduced using the developed tuned mass damper.

  • PDF

액상화에 의한 실트질 모레지반의 침하 산정 (Simplified Estimation of Settlement in Silty Sand Grounds Induced Liquefaction)

  • 이민호;김태훈;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2000
  • When subjected to earthquake shaking, saturated sandy soil may generate excess pore pressure. And a time may come when initial confining pressure will equal to excess pore pressure. Depending on the characteristics of the soil and the length of the drainage path, excess pore pressure was dissipated after earthquake. For this reason, it was induced settlement in grounds and fatal damage of various structures. In this study, settlement in silty sand grounds induced earthquake was evaluated using post-liquefaction constitutive equation between volumetric strain and shear strain from previous study. Using that, it was proposed that simplified estimation of settlement in silty sand grounds induced liquefaction.

  • PDF

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.