• 제목/요약/키워드: induced drag

검색결과 166건 처리시간 0.023초

수중함의 긴급기동 해석을 위한 유체력계수 모델링에 관한 연구 (A Study on the Modeling of Hydrodynamic Coefficient for the Emergency Maneuver Simulation of Underwater Vehicle)

  • 신용구;이승건
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.601-607
    • /
    • 2005
  • This paper describes a hydrodynamic modelling study based on the Feldman's equation to predict the nonlinear and coupled maneuvering characteristics of high speed submarine. The hydrodynamic coefficients set is obtained from the modeling of the cross flow drag force and sail induced vorticity, and the captive model experiments(VPMM and RA test) results used to improved the accuracy. The results contained in this paper will be helpful to predict the behavior of tight turn maneuver and to improve the SOE(Safety Operational Envelope) analysis in case of emergency maneuver.

선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) - 갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 - (A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) - Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck -)

  • 김철승;공길영;김순갑
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 춘계학술대회논문집
    • /
    • pp.145-153
    • /
    • 2002
  • A coastwise chemical tanker sailing at full speed has capsized in calm water and whole turing. In the precious paper, we investigated reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and the vertical distance between the center of gravity of the ship and the renter of lateral water drag.

  • PDF

Wind-induced aerostatic instability of cable-supported bridges by a two-stage geometric nonlinear analysis

  • Yang, Y.B.;Tsay, Jiunn-Yin
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.381-396
    • /
    • 2008
  • The aerostatic instability of cable-supported bridges is studied, with emphasis placed on modeling of the geometric nonlinear effects of various components of cable-supported bridges. Two-node catenary cable elements, which are more rational than truss elements, are adopted for simulating cables with large or small sags. Aerostatic loads are expressed in terms of the mean drag, lift and pitching moment coefficients. The geometric nonlinear analysis is performed with the dead loads and wind loads applied in two stages. The critical wind velocity for aerostatic instability is obtained as the condition when the pitching angle of the bridge deck becomes unbounded. Unlike those existing in the literature, each intermediate step of the incremental-iterative procedure is clearly given and interpreted. As such, the solutions obtained for the bridges are believed to be more rational than existing ones. Comparisons and discussions are given for the examples studied.

주기적인 경계조건을 사용하는 수치모사에서 계산영역 크기의 영향 (Effect of domain size on flow characteristics in simulating periodic obstacle flow)

  • 최춘범;장용준;한석윤;김진호;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2477-2482
    • /
    • 2008
  • Effect of computational domain size in simulating of periodic obstacle flow has been investigated for the flow past tube banks. Reynolds number, defined by freestream velocity (U) and cylinder diameter (d), was fixed as 200, and center-to-center distance (P) as 1.5d. In-line square array was considered. Drag coefficient, lift coefficient and Strouhal number were calculated depending on domain size. Circular cylinders were implemented on a Cartesian grid system by using an immersed boundary method. Boundary condition is periodic in both streamwise and lateral directions. Previous studies in literature often use a square domain with a side length of P, which contains only one cylinder. However, this study reveals that size is improper. Especially, RMS values of flow-induced forces are most sensitive to the domain size.

  • PDF

규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석 (Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves)

  • 신현경;이호영;임춘규;강점문;윤명철
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

Graphical technique for the flutter analysis of flexible bridge

  • Lee, Tzen Chin;Go, Cheer Germ
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.41-49
    • /
    • 1999
  • The flutter of a bridge is induced by self-excited force factors such as lift, drag and aerodynamic moment. These factors are associated with flutter derivatives in the analysis of wind engineering. The flutter derivatives are the function of structure configuration, wind velocity and response circular frequency. Therefore, the governing equations for the interaction between the wind and dynamic response of the structure are complicated and highly nonlinear. Herein, a numerical algorithm through graphical technique for the solution of wind at flutter is presented. It provides a concise approach to the solution of wind velocity at flutter.

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • 제12권3호
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

Experimental study of cactus-like body shape on flow-induced vibration mitigation of clustered cylinders

  • Shi, Chen;Liu, Yang;Wang, Jialu;Chen, Fabo;Liu, Zhihui;Bao, Xingxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.194-207
    • /
    • 2021
  • Vortex-Induced Vibration (VIV) is a major contributor to the fatigue damage of marine risers which are often arranged in an array configuration. In addition to helical strakes and fairings, studies have been strived in searching for possible VIV suppression techniques. Inspired by giant Saguaro Cacti, flexible cylinders of different cactus-shaped cross sections were tested in a water tunnel facility, and test results showed that cactus-like body shapes reduced VIV responses of a cylinder at no cost of significant increase of drag. A series of experiments were conducted on a pair of two tandem-arranged flexible cylinders and an array of four cylinders in a square configuration to investigate the effects of wake on the dynamic responses of cylinders and the VIV mitigation effectiveness of the cactus-like body shape. Results showed that the cylinders in a square configuration, either at the upstream or downstream positions, might have larger dynamic responses than those of a single cylinder. The cactus-like body shape could mitigate VIV responses of cylinders at upstream positions in an array configuration; however, similar to helical strakes, the mitigation efficiency was reduced on downstream cylinders. Note that the cactus-like cross-sectional shape investigated was not optimized for VIV suppression. The present study indicates that the modification of the cross-sectional shape of a cylinder to a well-designed cactus-like shape may be used as an alternative technique to mitigate the VIV of marine risers.

Numerical studies on flow-induced motions of a semi-submersible with three circular columns

  • Tian, Chenling;Liu, Mingyue;Xiao, Longfei;Lu, Haining;Wang, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.599-616
    • /
    • 2021
  • The semi-submersible with three circular columns is an original concept of efficient multifunctional platform, which can be used for marginal oil, gas field, and Floater of Wind Turbines (FOWT). However, under certain flow conditions, especially in uniform current with specific velocities, the eddies will alternatively form and drop behind columns, resulting in the fluctuating lift force and drag force. Consequently, the semi-submersible will subject to the Flow-Induced Motions (FIM). Based on the Detached Eddy Simulation (DES) method, the numerical studies were carried out to understand the FIM characteristics of the three-column semi-submersible at two different parameters, i.e., current incidences (0°, 30°, and 60°-incidences) and reduced velocities (4 ≤ Ur ≤ 14). The results indicate that the lock-in range of 6 ≤ Ur ≤ 10 for the transverse motions is presented, and the largest transverse non-dimensional nominal amplitude is observed at 60°-incidence, with a value of Ay/D = 0:481. The largest yaw amplitude Ayaw is around 3.0° at 0°-incidence in the range of 8 ≤ Ur ≤ 12. The motion magnitude is basically the same as that of a four-column semi-submersible. However, smaller responses are presented compared to those of the three-column systems revealing the mitigation effect of the pontoon on FIM.

도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구 (A numerical study on effects of thermal buoyance force on number of jet fans for smoke control)

  • 유지오;신현준
    • 한국터널지하공간학회 논문집
    • /
    • 제15권3호
    • /
    • pp.301-310
    • /
    • 2013
  • 현재 도로터널에는 화재시 임계풍속을 유지할 수 있도록 제트팬을 설치하고 있으며, 제트팬 댓수는 임계풍속을 유지하기 위한 유동저항, 자연풍에 의한 환기저항, 열부력에 의한 환기저항을 고려하여 산정한다. 그러나, 국내의 경우, 제트팬 댓수 산정시 열부력은 고려하지 않고 있는 실정이다. 이에 본 연구에서는 열부력이 제트팬 댓수에 미치는 영향을 검토하기 위해서 터널연장(500, 750, 1000, 1500, 2000, 3500 m) 및 경사도(-1.0, -1.5, -2.0%)를 변수로 하여 화재성장곡선에 따른 비정상상태의 수치 시뮬레이션을 수행하였으며, 열기류의 평균온도 및 열부력에 의한 압력손실을 검토하여 열부력이 제트팬 댓수에 미치는 영향을 검토하였다. 이에 본 연구에서는 화재로 인한 열부력을 고려하는 경우에 제트팬 댓수의 증가가 필요하며, 특히, 설계화재강도를 100 MW로 하는 경우에는 본 해석조건의 모든 범위에서 열부력에 의한 압력손실이 차량저항에 의한 압력손실의 최대치보다 증가하며, 현행설계기준을 적용하는 경우보다. 최소 2~11대의 제트팬 대수의 증가가 필요한 것으로 분석되었다. 따라서 제연용 제트팬 용량 산정시 열부력에 대한 고려가 반드시 필요한 것으로 나타났다.