• 제목/요약/키워드: indoor heating system

검색결과 242건 처리시간 0.025초

Investigations on the emergency operation status of existing medical facilities to prepare for emerging infectious diseases in the post-COVID-19 era (포스트 코로나 시대 신종 감염병 대비를 위한 기존 의료시설의 비상시 운영사례 조사 및 분석)

  • Lee, Sejin;Lee, Wonseok;Kim, Eunseok;Yeo, Myoungsouk
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • 제29권1호
    • /
    • pp.43-51
    • /
    • 2023
  • Purpose: To accommodate the increasing number of patients during the COVID-19 pandemic, numerous portable HEPA filter units (PHUs) were installed in the general wards of existing medical facilities(EMFs) to convert them into emergency conversion facilities (ECFs). The purpose of this study was to build a dataset in preparation for emerging infectious diseases in the post-COVID-19 era by analyzing the construction and operation of ECFs. Methods: Field investigations were conducted during ECF operation periods based on the analysis of heating, ventilation, and air conditioning (HAVC) system design documents for six ECFs across Korea. Interviews were conducted with facility managers during the field investigations. Results: When constructing an ECF within an EMF, the installation status and characteristics of the existing system should be considered. Field investigations and verifications of the operation of HAVC systems must be conducted beforehand for smooth ECF operations. If heating and cooling are required with indoor air circulation type equipment in an ECF zone, the implementation of a heating and cooling method that can satisfy the comfort requirements of the occupants while minimizing cross-contamination is essential. When using PHUs that do not meet the performance standards required by medical equipment, the noise level resulting from such equipment operation must be evaluated and improved. Implications: For EMFs, various guidelines that can be referred to for the construction and operation of ECFs must be developed to prepare for emerging infectious diseases in the future.

Efficiency of Photoplasma of HVAC System for Train (철도차량 HVAC시스템의 광플라즈마 성능평가)

  • Han, Hwan-Su;Jeon, Seung-Gie;Park, Tae-Young;Kim, Bong-Sang;Park, Duck-Shin;Kwon, Soon-Bark
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1293-1296
    • /
    • 2007
  • An amenity requirement of the passenger using public traffic is rising continuously, and also The Ministry of Environment established "Indoor air quality management guidelines in public facilities(Dec. 2006)". To satisfy such requirement, the photoplasma device to decrease VOCs(Volatile Organic Compounds) and suspended bacillus is applied to the underframe mounted HVAC(Heating, Ventilating and Air-Conditioning) system for train. Air purifying method of photoplasma device is optical and chemical reaction that UV-light(wavelength less than 280nm) react with catalyst material(TiO2). To analyze the efficiency of photoplasma in this study, we measured the requirement time for toluene to decease down to 0.3ppm after contaminating the passenger cabin for train to toluene 1ppm.

  • PDF

Energy Saving Effect of ERV(Energy Recovery ventilator) with Economizer Control in Residential Building (Economizer cycle control을 채용한 전열교환시스템의 에너지 절감효과 분석 -국내 공동주택을 대상으로-)

  • Park, Jae-Hyung;Kim, Joo-Wook;Song, Doo-Sam;Yoon, Ho-Young;Kim, Sung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.679-684
    • /
    • 2009
  • ERV system has installed in almost newly constructed residential building in Korea. Heat recovery features of ERV can be possible to decrease the heating and cooling load caused by ventilation. However, in case of the outdoor condition is favorable to control the indoor air, the heat recovery function of ERV does more harm than good in term of cooling load. In this study, the ERV with economizer cycle control for residential building is suggested and the performance of the suggested system will be analyzed using TRNSYS.

  • PDF

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제28권1호
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제20권4호
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

Analysis on the Cooling Effect of Applying Temperature Discoloration Paint to a Roof Surface (온도 변색 도료의 지붕 적용 및 냉방효과 분석)

  • Baek, Sanghoon
    • Land and Housing Review
    • /
    • 제13권4호
    • /
    • pp.115-123
    • /
    • 2022
  • This study aims to introduce a temperature discoloration roof system and its cooling effect in the summer. Temperature discoloration paints can reverse their colors based on temperature changes. If these paints on the roof surface could color-shift between white in the summer and black in the winter, the indoor cooling and heating loads can be affected by the changes in reflection and absorption of solar radiation. Focusing on the summer period, the study analyzed the cooling effect of applying temperature discoloration paint that color-shifts from white to black on the roof surface of a small experimental building module and compared it to commonly used gray and green roof colors. Results of the experiment showed that the surface temperature of the roof with temperature discoloration paint was lower than the gray and green color roofs by a maximum of 10℃. Furthermore, the indoor temperature of the experimental module with the temperature discoloration roof was lower than the gray and green roofs by approximately 3℃. Findings of the study indicate that the application of temperature discoloration paint to the roof can reduce indoor cooling loads.

A Study on the Performance of Solar Heat, Pump Cycle System for $CH_2F_2$, $CF_3CHF_2$ and $CF_3CH_2F$( I ) ($CH_2F_2-CF_3CH_2F-CF_3CHF_2$계 냉매적용 태양열 열펌프시스템 성능 연구( I ))

  • Lee, Soon-Bok;Jung, Hyun-Chai;Bae, Chun-Woo;Sun, Kyung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • 제23권2호
    • /
    • pp.71-79
    • /
    • 2003
  • The goal of this paper is to measure and compare the performance of solar heat pump for refrigerants. To accomplish the goal, solar heat pump with aluminum roll bond type evaporator and indoor heat exchanged(condenser) was built. The test results showed that the COP and heating capacity of HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) were higher than those of HCFC-22$(CHClF_2)$. A study proved that best conditions to use heating system that is about $40m^2$ and $80m^2$. The COP range of the whole system was from 4 to 6 according to the solar collector's area variation. Hydrochlo-rofluorocarbon HCFC-22$(CHClF_2)$ is included in the compound to be controlled. HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) is the most suitable replacement HCFC-22$(CHClF_2)$ in solar heat pump application. The solar heat pump system was designed to show the best efficiency that the room temperature make $18\sim20^{\circ}C$ and $23\sim25^{\circ}C$ in Seoul during the fall season.

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • 제17권7호
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • 제28권5호
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.