• Title/Summary/Keyword: indoor concentration

Search Result 827, Processing Time 0.024 seconds

A study on Measurement and Improvement of Indoor Air Quality in Dental Clinic

  • Choi, Mi-Suk;Ji, Dong-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.143-149
    • /
    • 2018
  • The purpose of this study is to propose a management method to maintain the pleasant indoor air quality of the dental clinic by measuring and analyzing the indoor air quality of the dental clinic. The measurement was conducted in two rooms, a lobby where many residents stay in the reception room for waiting for medical treatment, and a VIP room where treatment activities are mainly performed. Measurement items are Temperature, Humidity, $CO_2$, CO, $NO_2$, $CH_2O$, VOC, $PM_{10}$ and measurement were taken on April 27, 2018. As a result of analyzing the temperature and humidity of the dental clinic, it was analyzed that the average indoor temperature was maintained at $25^{\circ}C$ and the humidity was kept at around 50%, maintaining proper indoor temperature and humidity environment. $CO_2$ was 855ppm in the VIP Room, which satisfied the maintenance standard. In the case of the lobby, it was analyzed to be 1,160ppm, which exceeded the maintenance standard and it is judged that the carbon dioxide generated by the respiration of the people staying in the lobby is the main reason. The mean concentration of formaldehyde in the VIP room was analyzed as $436{\mu}g/m^3$, exceeding the maintenance standard, and $2,100{\mu}g/m^3$ for the VOC exceeded the recommended standard. It was analyzed that the concentration was relatively higher due to the use of disinfectant and other drugs. The mean concentration of PM-10 in the lobby was analyzed as $65{\mu}g/m^3$ and it was analyzed that it satisfied the maintenance standard. To maintain a pleasant indoor air quality in a dental clinic it is necessary to minimize the effects of formaldehyde, VOC, $CO_2$ in the VIP rooms and lobby. For this purpose, the entire ventilation system and air purification system of the dental clinic should be installed. In case of the VIP room, local exhaust ventilation should be installed and workers should wear personal protective equipment.

Influence of the CO2Concentration level on Sleep Quality (실내 CO2농도가 재실자의 수면의 질에 미치는 영향)

  • NA, LI;Han, Jin-kyu;Choi, Yoorim;Chun, Chung-yoon
    • Journal of Korean Living Environment System
    • /
    • v.19 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • This study investigated the influence of the indoor CO2concentration level on sleep quality by polysomnography(PSG). One healthy female subject was selected among several subjects based on RI(Risk Indicator) value and BMI(Body Mass Index) value to evaluate judging the risk level of obstructive sleep apnea hypopnea. To get the impact of the indoor carbon dioxide concentration to sleep quality, both CO2concentration levels were set up using ventilating form with 700~800 ppm and 2000~3000 ppm. Other environments were controlled in the comfortable sleep scope by previous researches. To measure the sleep quality, measurements have carried on polysomnography(PSG). In conclusion, it have shown that high carbon dioxide concentration leads arousal effect about central nervous system and to sustaining dreams and excited condition by bring about REM sleep split phenomenon.

Characteristics of Exposure Distribution to Hazard Factors in Indoor Swimming Pool Activity Areas in Gwangju (수영장 활동공간 내 유해인자 노출특성 연구)

  • Lee, Youn-Goog;Kim, Nan-Hee;Choi, Young-Seop;Kim, Sun-Jung;Park, Ju-Hyun;Kang, Yu-Mi;Bae, Seok-Jin;Seo, Kye-Won;Kim, Jong-Min
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2020
  • Objective: This study is designed to measure the concentration of DBPs (disinfection by-products) in pool water and in air and to estimate the carcinogenic potential through the evaluation of inhalation exposure. Methods: The subjects were six indoor swimming pools with many users in Gwangju. Samples of pool water and indoor air were taken every one month from August 2018 to August 2019 and analyzed for eight swimming pool standards. Three-liter air samples were collected and the VOCs were analyzed using GC/MS directly connected to thermal desorption. Results: pH was 6.8-7.5 and the concentration of free residual chlorine in pool water was 0.40-0.96 ?/ℓ. Physicochemical test items such as KMnO4 consumption and heavy metal items such as Aluminum met existing pool hygiene standards. No VOC materials were detected except for the DBPs. The concentration of THMs in the pool water was 11.05-41.77 ㎍/L and the THMs mainly consist of Chloroform (63-97%) and BDCM (3-31%). The concentration of indoor air THMs is 13.24-32.48 ㎍/㎥ and consists of Chloroform. The results of carcinogenic assessment of chloroform in the indoor swimming pool via inhalation exposure were 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA. Conclusions: The concentration of THMs in the pool water is 11.05-41.77 ㎍/L, most of which is chloroform. In addition, the concentration of indoor air THMs is 13.24-32.48 ㎍/㎥. The result of carcinogenic assessment of chloroform was 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA.

Health effects on workers and actual exposure of VOCs in the nail shops (네일샵 종사자의 휘발성유기화합물 노출실태와 건강에 미치는 영향)

  • Kim, Nan-Hee;Min, Kyoung-Woo;Cho, Gwang-Woon;Seo, Dong-Ju;Im, Kyeong-Hun;Jeung, Won-Sam;Cho, Young-Gwan;Yang, Jin-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • Objectives: The objective of this study is to evaluate the exposure of VOCs and effects of the chemicals on the nail technicians whose works in a nail shop. Methods: For four month from May to August in 2016, we measured twenty-two kinds of VOCs in ten nail shops and carried out health examinations on thirty-four workers in there. Results: The TVOC concentration in indoor air of nail shops is $0.487mg/m^3$ at a minimum and $33.236mg/m^3$ at a maximum where it consists of 70.5% of Ketones, 25.4% of Alcohols, 2.6% of Esters, 0.8% of Aldehydes and 0.7% of Aromatics. The VOCs concentration during nail art works shows an increase in average ratio 1.8 compared to the concentration of indoor air quality and also the concentration of Isopropanol rose with 3.2 of the highest ratio. The results of Spearman correlation between TVOC concentration in indoor air and environmental factor was like that has significance level of correlation(${\rho}$<0.05, r=0.682) in case of number of customers per day, but the other factors were not meaningful in correlation. Correlation between VOCs and medical check-up items was like that has positive significance level(${\rho}$<0.01, r=0.638) between isopropanol and GPT, but the others have not meaningful. The exposure level of VOCs was not exceed the criteria exposure level 1 of working environment measuring method which announced by labor ministry in all ten nail shop indoor air quality. Conclusions: In this study although it was not significant correlation between harmful substances and medical check-up items in the nail shop indoor air quality, it is necessary to do more ventilation and to install exhaust facilities because of existing high VOCs concentration in the nail shop indoor air.

Seasonal Radon Concentration and Correlation Analysis of Indoor Radon Originated from Soil and Soil Radon at Detached House (계절적 라돈농도 변화 및 토양기원 실내라돈과 토양내 라돈농도의 상관성 분석 -단독주택 사례연구-)

  • Cho, Ju-Hyun;Kim, Younghee
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.105-111
    • /
    • 2017
  • In this study, the variation of indoor and soil radon concentrations were measured at a test bed (detached house), and correlation analysis was performed using linear regression. The results showed that the average concentration of indoor radon was increased by about 20% when the heater was operated in the house, but it was decreased by 15% when the ventilation system was on. In the changes of seasonal radon concentrations, soil and indoor radon concentrations in winter were higher than in summer. Statistical analysis showed a weak correlation between the soil radon and indoor radon, but the correlation (R=0.852, $R^2=0.726$) was relatively high at exhaust condition in the winter. It is difficult to extrapolate the results of the study to the general cases because radon distribution is highly site-specific, but the result of this study could be used as a reference for radon management and reduction of detached house in the future investigations.

Purification Ability of Indoor Plants for Volatile Organic Compounds (VOCs) (실내식물의 휘발성유기화합물질 정화에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.417-423
    • /
    • 2006
  • The purification ability of indoor plants for volatile organic compounds was investigated. Philodendron selloum and Spathiphyllum sp. were tested for removal of toluene and trichloroethylene in the artificially contaminated reactor under laboratory conditions. Each plant was placed in right side of the reactor and the TCE and toluene concentration change with time were monitored. In the reactor with Philodendron, the TCE concentrations of left and right sides were compared to examine the removal effects by plant. In the reactor with Spathiphyllum, air was circulated before sampling, and thus average removal effects by plants on target VOC were observed. Both plants showed clear effects on removal of VOCs from contaminated indoor air. The removal efficiency of Philodendron and Spathiphyllum were similar and showed 30 - 46% and 31 - 47% of purification effects, respectively. The results of this study showed that air purification using plants is an effective means of reduction on indoor VOCs concentration level and reduce related health risk though, supplementary purifying aids or proper ventilation were also suggested.

Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System (창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구)

  • Park, Dong Yoon;Chang, Seongju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.

A Study of Indoor Thermal and Air Quality in Middle and High School Classrooms during Winter (겨울철 학교교실의 실내열.공기환경 실태와 학생들의 주관적 반응)

  • Choi, Yoon-Jung;Na, Sun-Hee;Jo, Su-Youn
    • Korean Journal of Human Ecology
    • /
    • v.18 no.2
    • /
    • pp.509-522
    • /
    • 2009
  • This is a basic study to improve air quality of school classrooms in winter time. The purposes are to check indoor thermal and air environment in school classrooms during winter and to analyze influencing factors on indoor environment. The measurements of students' physical elements with questionnaire surveys were carried out in a total of 6 classrooms. As a result, this research shows that the temperature of one classroom was below indoor thermal standard level, three classrooms had lack of heat, and two classrooms are heated much, which induce relatively low humidity. All of 6 classrooms had lack of ventilation, being high level of $CO_2$ concentration and 2 classrooms are in condition of high PM10 concentration. The majority of students(76%) answered that the cause of their 'heated space syndrome' is because of the lack of ventilation. Students' opening windows for ventilations is hardly carried out at normal times, except that indoor temperature is over standard. That is, we can suggest one of solutions, which is to enable students to operate heating and ventilating system by themselves according to students' physical condition.

Properties of Indoor Particles Collected in Japanese Homes

  • Ma, Chang-Jin;Kang, Gong-Unn;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Due to the heightened ambient $PM_{2.5}$ levels, the whole citizen of Japan, especially dwellers in Fukuoka Prefecture, start to make attention to the particulate matter (PM) of indoor environments. This study was aimed to thoroughly estimate the characteristics of indoor PM collected in five Japanese homes located in Fukuoka Prefecture. Simultaneous indoor measurements of PM were intensively made at five homes using filter-pack samplers, particle counters, and $PM_{2.5}$ monitors for a day in springtime, 2012. Major ionic and carbonaceous components were also analyzed. The time series fluctuation of PM number concentration was gradually decreased by 6 AM and then it was rapidly increased by 8 AM in all indoor sites. The maximum level of $PM_{2.5}$ was measured at the morning time (8 AM-9 AM) when the resident's behavior was fast and strenuous. The Indoor/Out-door (I/O) ratio for the giant PM larger than $5.0{\mu}m$ was 1.16. It was possible to identify PM types and estimate the resident's behavior through the comparison the theoretically calculated and the measured retention times for several types of PM in an indoor site. The theoretically reconstructed mass concentration of $PM_{2.0-0.3}$ suggested that the portion of $PM_{2.5}$ in indoor was quietly occupied by $PM_{0.3}$ or the PM inherently originated from indoor environment.

Application of an In-situ Measurement System to Determine HONO Levels in an Indoor Environment (실시 측정시스템을 활용한 실내 환경에서 HONO 농도 조사)

  • Hong, Jin-Hee;Lee, Jai-Hoon;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.191-202
    • /
    • 2007
  • We developed an in-situ analyzer to understand the HONO levels in indoor environments. The in-situ measurement system utilizes a diffusion scrubber and luminol chemiluminescence to measure the HONO concentration with time resolution of 4-minute. Concentrations of NO, $NO_{2}$, and HONO were determined at an indoor air of an apartment for 9 days using the developed in-situ analyzer. Indoor HONO concentrations were highly elevated when a gas range was operated. Enhancements of the indoor NO, $NO_{2}$, and HONO concentrations during combustion indicate that the observed indoor HONO was formed by direct emission. In addition to the direct emission, the indoor HONO was partially generated from heterogeneous reactions of $NO_{2}$ on indoor surfaces, which was supported by strong relationships between peak NO, $NO_{2}$, and HONO concentrations, high HONO/$NO_{2}$ ratio and a weak correlation between NO and HONO concentrations. Additionally, three combustion experiments during the whole measurement period were performed to investigate the effects of unvented and vented gas burning on the HONO, NO, and $NO_{2}$ concentrations and their decay. The decay rate of the HONO concentration was significantly less than the NO and $NO_{2}$ decay rates for all the experiments, indicating that the lifetimes of trace nitrogen species in indoor environment varied in the order approximately HONO>$NO_{2}$>NO.