• Title/Summary/Keyword: indoor channel model

Search Result 79, Processing Time 0.028 seconds

The Verification of DS-UWB Channel Model in Indoor (실내에서 DS-UWB 시스템의 채널 모델링 및 검증)

  • Jang, Pil-Seon;Kwon, Han-Jun;Ko, Young-Eun;Bang, Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.43-44
    • /
    • 2006
  • In this paper modeled UWB system transmission channel in apartment environment while furniture and household electric appliance etc. existed. We measured from 10MHz to 16.01GHz by using method of CIR and CTF in both LOS and NLOS environment. Also we design channel model simulator by MATLAB. The Result of Simulation shows BER characteristics by SNR.

  • PDF

Indoor Propagation Characteristics at 5.2GHz in Home and Office Environments

  • Chung, Hyun-Kyu;Bertoni, Henry L.
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.176-188
    • /
    • 2002
  • This paper presents results of continuous wave and swept frequency response measurements over the frequency range of UNII lower and middle bands from 5.15GHz to 5.35GHz in indoor environments. From the continuous wave measurements at 5.2GHz, the excess path loss, and the statistical characteristics of the temporal and spatial fading were found. By sweeping the frequency over the band, envelope correlation as a function of frequency was found and the coherence bandwidth (CBW) was determined from the envelope correlation. Using a channel model, the CBW was used to evaluate RMS delay spread. The dependence of CBW on the antenna polarization was simulated and compared with the measurement results. The influence of room size and separation of transmitter and receiver for LOS paths on RMS delay spread was discussed.

Millimeter-wave directional-antenna beamwidth effects on the ITU-R building entry loss (BEL) propagation model

  • Lee, Juyul;Kim, Kyung-Won;Kim, Myung-Don;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Assuming omnidirectional antenna reception, the ITU-R recently developed a new propagation model on building entry loss (BEL) for 5G millimeter-wave frequency sharing and compatibility studies, which is a simplified outdoor-to-indoor path loss model. Considering the utilization of high-gain narrow-beamwidth beamforming, the omnidirectional-based ITU-R BEL model may not be appropriate to predict propagation characteristics for directional beamforming scenarios. This paper studies the effects of beamwidth on the ITU-R BEL model. This study is based on field measurements collected with four different beamwidth antennas: omnidirectional, 10° horn, 30° horn, and 60° horn. The measurement campaigns were conducted at two types of building sites: traditional and thermally efficient buildings. These sites, as well as the measurement scenarios, were carefully chosen to comply with the ITU-R BEL measurement guidelines and the ITU-R building types. We observed the importance of accurate beam alignment from the BEL variation range. We were able to quantify the beamwidth dependency by fitting to a model that is inversely proportional to the beamwidth.

Performance Analysis of the High-Rate 0] Wireless LAN Systems in Multipath Chann Environments (OFDM 방식을 적용한 고속 무선 LAN 시스템의 다중 경로 채널 모델에서 성능분석)

  • 김신희;김덕수;나상중;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.9-12
    • /
    • 2002
  • In this paper, we analyze high-rate wireless LAN system based on Orthogonal Frequency Division Multiplexing(OFBM) transmission method. For this analysis, actual channcl measurement model of indoor office areas such as JTC model was adopted, and cllanncl coding of IEEE 502.11 and channel equalizer over multipath environment are also considered.

  • PDF

A 3D Ray-Tracing Propagation Model for Analyses on the Indoor Polarization Diversity Scheme (3차원 광선 추적법을 이용한 실내 환경에서의 편파 다이버시티 성능 분석에 관한 연구)

  • 홍순학;석우찬;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.766-776
    • /
    • 1999
  • In this paper to evaluate the performance of the polarization diversity and the space diversity in the indoor environment, we used 3D Ray-tracing simulation. This model is capable of predicting small scale fading characteristics of the channel for evaluating the performances of both the polarization and the space diversity scheme. The measurement and simulation results show that the polarization diversity and the space diversity are expected to be efficiently used for the indoor environments. Moreover, the results show that the proposed polarization diversity technique using directional dual polarization microstrip array antennas has more diversity gain than the conventional polarization and space diversity using dipole antenna.

  • PDF

Analysis of Performance for SC-FDE Systems Using Proportional Adaptive Equalizer in $2GHz{\sim}10GHz$ Frequency Radio Channel Models ($2GHz{\sim}10GHz$ 무선 채널 환경에서 비례 적응형 등화기를 이용한 SC-FDE 시스템 구현과 성능분석)

  • Yang, Yong-Seok;Lee, Kyu-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.447-453
    • /
    • 2007
  • In the multipath fading channel, OFDM(Orthogonal Frequency Division Multiplexing)system possess the characteristics of ISI/ICIwith prefix, but a weak point of circuit complexity and PAPR problem. SC-FDE(Single Carrier with Frequency Domain Equalization) performance is similar to OFDM system, but equalizer is complex in frequency domain. In this paper, simple proportional equalizer offer for SC-FDE system, it useful method in the $2GHz{\sim}\;10GHz$ channel model such as indoor, outdoor, SUI. It prove using MATLAB simulation, speed faster then OFDM system, reduce terminal complexity in same test condition.

Indoor Localization based on Multiple Neural Networks (다중 인공신경망 기반의 실내 위치 추정 기법)

  • Sohn, Insoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

A Modified UWB Channel Model Considering The Circular Polarization Wave in Indoor Radio Propagation Environments (실내무선전파환경에서의 원형편파 전파를 고려한 수정된 UWB 채널 모델)

  • Seo, Yu-Jung;Ahn, Jae-Sung;Ha, Deock-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.651-654
    • /
    • 2008
  • 협대역 다중접속 방식의 한계를 벗어난 Ultra-wide band(UWB) 기술이 고속 데이터 전송을 위해 많이 개발되어지고 있다. UWB 시스템은 방사전력 제한을 두고 있어서 근거리 실내 무선통신 분야에서 활용 범위가 확대되고 있다. 하지만 실내 무선 환경에서는 벽, 천장, 바닥 그리고 실내에 위치한 장애물 등에 의한 다중경로 페이딩 영향으로 초고속 실내 무선통신 서비스를 제공하는데 어려움이 있다. 이러한 실내 다중경로 성분에 의한 페이딩을 경감시키는 여러 가지 방법 중에서 원형편파를 이용하면, 상대적으로 긴 지연을 갖는 강한 다중경로 성분을 효과적으로 제거할 수가 있기 때문에 수신신호의 RMS 지연 감소, 페이딩 경감 및 신호강도 개선효과 등을 얻을 수 있다. 본 논문에서는 원형편파를 고려한 수정된 UWB 채널의 파라미터를 수정 정립하였고, 수정된 채널모델을 UWB 시스템에 적용하여 성능 개선을 시도하였다.

  • PDF

Channel Modeling and RF Performance Verification in mmWave Bands Based on NS-3 (NS-3 기반의 mmWave 대역 채널 모델링 및 RF 성능 검증)

  • Seung-Min Lee;Jun-Seok Seo;Hong-Je Jang;Myung-Ryul Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.650-656
    • /
    • 2023
  • This paper implements a channel model for mmWave bands using an NS-3-based 5G system-level simulator and analyzes the reliability and validity of the implemented model through RF performance verification. The channel model for RF performance verification in the mmWave bands consider parameters such as characteristics defined in 3GPP TR 38.901, beam-forming, antenna configuration, scenarios, among others. Furthermore, the simulation results verify compliance within the ranges permitted by the 3GPP standards and verify reliability in indoor environmental scenarios by exploiting the Radio Environment Map (REM). Therefore, the channel model implemented in this study is applicable to the actual design and establishment of 5G networks, presenting a method to evaluate and validate RF performance by adjusting various parameters.

An Average-Weighted Angle of Arrival Parameter Estimation Technique for Wireless Positioning based on IEEE 802.15.3a (IEEE 802.15.3a 기반의 무선 위치인식을 위한 평균가중 신호 도착방향 매개변수 추정 기법)

  • Baang, Sung-Keun;Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.472-478
    • /
    • 2010
  • In the environment of wireless communication system of IEEE 802.15.3a UWB standard, the angle of arrival(AOA) estimation technique for the indoor wireless positioning algorithms, based on the AOA parameter estimation which fits well for the wireless communication channel and shows high estimation accuracy, is proposed. After the UWB signal model, based on the IEEE 802.1.3a standard, is constructed, the average weighted MUSIC technique is proposed, which shows better estimation accuracy than those of conventional estimation technique. Through the simulation studies, the environment of the indoor wireless positioning system including the IEEE 802.15.3a channel is configured and we demonstrate better estimation results by the proposed AOA estimation technique than those from the conventional method.