• Title/Summary/Keyword: indoor air ventilation system

Search Result 272, Processing Time 0.024 seconds

Development of Air Cleaning System for Railroad Vehicles (차세대 객차용 청정시스템 개발)

  • Park, Duck-Shin;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2109-2113
    • /
    • 2008
  • As the standard of living is higher, the passengers using public transportations desire better qualities of environment as well as more comfortable indoor environment. In case of train, the passengers' comfort in passenger cabin is one of the most important elements to be competitive with other transport systems. The indoor air quality of the cabin should be managed properly, because many passengers travel for a long time in the small space of $144\;m^3$. For proper management of the air quality, the heating, ventilation and air conditioning (HVAC) system is required for the ventilation of the compartment. To maintain comfortable environment in the compartment, the automatic ventilation system is needed to exchange the indoor air with fresh air or clean indoor air. In this study, we investigated the indoor air quality (PM-10, $CO_2$, and VOCs) in the compartment of train. In addition, type and pattern of PM-10 has been analyzed through the clustering analysis. Based on the analysis, we could found that the fine particulate matters in the compartment can be a serious hazard to human. To control the concentration of PM-10 and $CO_2$ air cleaners were developed. Through this study, it is expected that people who take a train will be in a more comfortable environment.

  • PDF

A Study on Improving Ventilation Performance in High-rise Residential Building by Natural Ventilation System (자연환기 시스템을 이용한 고층 공동주택의 환기성능 향상에 관한 연구)

  • Choi, Taehwoan;Kim, Yu-Mi;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2007
  • This study focuses on developing natural ventilation system which is able to satisfy the good indoor air quality and air speed. The natural ventilation system developed in this study is for double window façade and it has two operation modes for summer and winter. Operational sections of the devices have been analyzed by CFD simulation to calculate discharge coefficients of openings and estimated indoor air speed. For the analysis of the appropriate installation area ratio for each room and the optimum installation area, TRNFLOW simulation has been used. As the results, we could see that the natural ventilation system can provide the similar pollutant removal performance to 0.7 ACH of mechanical ventilation with appropriate installation area and installation area ratio.

A Study on the using of the Ventilation System as the Method of Improvement of Air Quality in the Schools (학교건물의 공기질 개선을 위한 환기시스템 적용에 관한 연구)

  • Ahn, Chul-Lin;Kim, Jwa-Jin;Kum, Jong-Soo;Park, Hyo-Soon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • The purpose of this study concerns the improvement of air quality in school classrooms. Polluted indoor air is improved by efficient ventilation systems. So it is important to measure the amount of ventilation needed in classrooms. First, the amount of natural ventilation were measured through a tracer gas method. And we have established a heat recovery ventilation system from 4 cases of airflow in classrooms, and we have measured the change of $CO_2$ density. According to air quality measurements in the classrooms, the density of $CO_2$ is well above environmental standards which are acceptable. When the amount of ventilated airflow increases, indoor air quality is improved. It is surveyed that the most suitable amount of external inducted air is 770 CMH to satisfy $CO_2$ less than 1,000 ppm in classrooms. For improvement of air quality in classrooms, we must consider a suitable ventilation plan and installation of ventilation systems when constructing school buildings.

Measurement of Indoor Air Quality for Ventilation with the Existence of Occupants in Schools

  • Shin Hee-Soo;Lee Jai-Kwon;Ahn Young-Chull;Yeo Chang-Shin;Byun Sang-Hyun;Lee Jae-Keun;Kang Tae-Wook;Lee Kam-Gyu;Park Hyo-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1001-1005
    • /
    • 2005
  • This paper evaluates the performance of ventilation for the removal of indoor pollutants as a function of ventilation rate and the number of occupants in a test room and school classroom. An experimental apparatus consists of a test room, a tracer gas supply system, a gas detector, and a fan for ventilation air supply with a controller. The ventilation performance is evaluated in a step-down method based on ASTM Standard E741-83 using $CO_{2}$ gas as a tracer gas in the test room of 35 $m^{3}.$ For the ventilation air flow rate of 1.0 ACH, a recommended ventilation flow rate of Korea school standard for acceptable indoor air quality in the case of one person, CO_{2}$ gas concentration decreases up to $55{\%}$ within 50 minutes without occupancy and increases up to $75{\%}$ in the case of one occupant. Also indoor air quality at the school classroom is investigated experimentally.

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.

A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation (건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구)

  • Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.

A study on Forced Ventilation Rate for Bedroom Indoor Air Quality Improvement (침실 공기질 개선을 위한 강제 환기횟수에 관한 연구)

  • Kim, Dong-Gyu;Lee, Sung;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 2009
  • The indoor air quality is one of the most important issues of designing ventilation in high rise apartment buildings. This study suggested proper ventilation rate in the apartment bedroom where mechanical ventilation system has installed. Six university students(four male and two female) were participating in the experiment. Experiments were performed in environmental chamber. Experimental conditions were combinations from three ventilation rate 0, 0.4 and 0.7. Measurement items during 8 hours of experimental time were temperature, humidity, carbon dioxide concentrations and questionnaire surveyed aftrer sleeping. The concentration of Carbon Dioxide depending on ventilation rate in the chamber was analyzed for proper ventilation rate. The results of this paper can be summarized as follows. (1) When two persons experiment, 0.7 ventilation rate was in excess of 1000ppm. (2) When one person experiment, 0.7 and 0.4 ventilation rates were satisfied the criteria of IAQ. (3) It compared 0.4 with 0.7 in the ventilation rate, 0.4 ventilation rate could reduced about 80% of the power by fan similarity law.

A Case Study of Hybrid Air Conditioning and Ventilation System (환기 병용형 냉난방 시스템 설계 및 현장 적용 사례 연구)

  • Lee, Hong-Cheol;Hwang, In-Ju;Shin, Hyun-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.89-94
    • /
    • 2008
  • In this study it was evaluated that hybrid air conditioning and ventilation system to reduce energy consumption and keep on comfortable indoor environment in an underground shopping center. Room temperature by hybrid HAVC system was controled as $1.8{\sim}2.1^{\circ}C$ low and indoor humidity was controled as $4.1{\sim}5.0%RH$ low, and response was fast in $2.0{\sim}2.5$ times compared with conventional system. And also transportation efficiency of hybrid HVAC system was improved in about 27%, and total energy consumption rate of hybrid HVAC system is decreased in 16% compared with conventional system.

  • PDF

An Analysis of Human Reaction & IAQ Analysis by Changing the Floor Temperature & Ventilation (바닥온도와 실내 환기에 따른 인체반응 및 실내공기질 분석)

  • Lee, Ji-Weon;Chin, Kyung-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2015
  • Recently many buildings are airtight, deterioration takes the high stage. As this room ventilation is increasingly difficult, the importance of indoor air was emphasized. And Got a few provisions on the indoor ventilation, the building is used for other purposes also requires a lot of careful research. In this study, consisting of floor heating ventilation in the room and wants to know the impact on the human body react with the carbon dioxide concentration in the indoor air were investigated PMV. We have get the data through the experimental study like this. It can be inferred correlations of ventilation and temperature according to human comfort that you should consider when using the work of residential buildings in accordance with the changing social conditions and social. It is also determined that in the future through additional experiments related data can be established basic experimental data.

A Numerical Analysis on the Indoor Air Ventilation by Stack Effect and Outdoor Wind in a High-rise Residential Building (초고층 주거건물에서 굴뚝효과와 외풍영향에 인한 실내 환기 기류해석 및 평가에 관한 연구)

  • Kim, Chi-Wan;Lim, Tae-Kun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.828-835
    • /
    • 2011
  • The purpose of this study is to analyze and evaluate the 3 types of indoor ventilation methods such as natural, mechanical, and hybrid ventilation in high-rise building which is affected by stack effect and outdoor air pressure. For the evaluation of the ventilation capacity, CFD simulation was performed in a typical high-rise residential building. The results of the simulations are as follows: 1) Natural ventilation method is not enough to the regulation. 2) In case of mechanical ventilation, congested area is occurred but meets the regulation. 3) In case of hybrid ventilation with stack effect, all the areas of indoor meet the regulation and congested area is reduced. 4) In case of high-rise building, the differences of ventilation rate among houses in the building are not large because the mechanical ventilation is main factor.