• 제목/요약/키워드: indoor air ventilation system

Search Result 272, Processing Time 0.02 seconds

Concentration and Properties of Particulate Matters (PM10 and PM2.5) in the Seoul Metropolitan (서울시 지하철 시스템 내의 입자상물질(PM10, PM2.5) 농도 특성)

  • Lee, Tae-Jung;Lim, Hyoji;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2015
  • Seoul subway plays an important part for the public transportation service in Seoul metropolitan area. As the subway system is typically a closed environment, frequent air pollution problems occurred and passengers get malhealth impact. Especially particulate matters (PM) is well known as one of the major pollutants in subway environments. The purpose of this study was to compare the concentrations of $PM_{10}$ and $PM_{2.5}$ in the Seoul subway system and to provide fundamental data in order to management of subway system. $PM_{10}$ and $PM_{2.5}$ samples were collected in the M station platform and tunnel of Subway Line 4 in Seoul metropolitan and in an outdoor location close to it from Apr. 21, 2010~Oct. 27, 2013. The samples collected on teflon filters using $PM_{10}$ and $PM_{2.5}$ mini-volume portable samplers and PM sequential sampler. The PM contributions were $48.6{\mu}g/m^3$ (outdoor), $84.6{\mu}g/m^3$ (platform) and $204.8{\mu}g/m^3$ (tunnel) for $PM_{10}$, and $34.6{\mu}g/m^3$ (outdoor), $49.7{\mu}g/m^3$ (platform) and $83.1{\mu}g/m^3$ (tunnel) for $PM_{2.5}$. The $PM_{10}$ levels inside stations and outdoors are poorly correlated, indicating that $PM_{10}$ levels in the metro system are mainly influenced by internal sources. In this study, we compared PM concentrations before and after operation of ventilation and Electrostatic Precipitator (EP). Despite the increased PM concentration at outdoor, $PM_{10}$ concentration at platform and tunnel showed the 31.2% and 32.3% reduction efficiency after operation the reduction system. The overall results of this study suggest that the installation and operation of the ventilating system and EP should have served as one of the important components for maintaining the air quality in the subway system.

Odor Removal Efficiency of Biofilter Ducting Systems in Indoor Pig House (바이오 필터를 이용한 비육돈사 배기덕트 시설의 악취저감 효과)

  • Song, J.I.;Choi, H.L.;Choi, H.C.;Kwon, D.J.;Yoo, Y.H.;Jeon, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • Management of odors is essential to swine industry in the Republic of Korea. This study was conducted to evaluate the odor removal efficiency of biofilter ducting systems. Rice straw and auto clave concrete(ALC) were used as filter medium. The ventilation fans(5 units, diameter: 500 mm) at the side wall of a growing pig housing were connected to a biofilter using a duct. The size of a biofilter is $2.5{\times}2{\times}1.2(W{\times}L{\times}H)$. The air velocities at the 300 mm above rice straw and ALC were 0.77 and 0.56 m/s, respectively. Ammonia concentration at the outlet of rice straw and ALC media were 2 and 3 ppm, respectively. Dust concentrations were also measured. The dust concentrations of rice straw and ALC were 93, $32\;mg/m^3$, respectively. There was no significant difference between filter mediums in terms of carbon dioxide concentrations(rice straw: 320, ALC: 270 mg/l). The concentration of hydrogen sulfide was stable over the experimentation. The actual concentrations of hydrogen sulfide were 4, 3 and 3 ppm at the days of 7, 21 and 36, respectively. These results suggest that biofilter ducting systems may remove odors from pig house effectively.

  • PDF