• 제목/요약/키워드: indoor air velocity

검색결과 132건 처리시간 0.024초

분리형 에어컨의 실내기 냉매 소음 저감 분석 (Analyzing for Refrigerant Induced Noise for Split Type Air Conditioner Indoor Unit)

  • 시케오 아오야마;모진용;이재권;송용재;한형석
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.240-246
    • /
    • 2006
  • In the air-conditioner, refrigerant induced noise and vibration can be increased when the airflow rate is reduced in order to decrease the noise at the low mode. Through the test and analysis of this kind of noise, it can be verified that the main reasons of refrigerant induced noise are the velocity and flow Induced force of the refrigerant at the inlet of the evaporator, So, in order to reduce this velocity, quality at the evaporator inlet should be minimized. And, in order to reduce flow induced force of the refrigerant, sudden change of fluid flow must not be occurred. So, in this paper, we will review the characteristics of refrigerant cycle and find how the quality and flow induced force can be minimized.

R404A와 R744의 냉매를 이용한 냉동탑차 냉장성능 비교에 관한 해석적 연구 (Analytical Study of Cooling Performance Comparison in a Refrigerator Truck Using R404A and R744)

  • 명치욱;김상훈;조홍현
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.119-125
    • /
    • 2011
  • The analysis of performance characteristics in a refrigerator truck using R404A and R744 was carried out by using theoretical method, and each performance was compared with a variation of operating conditions. The components and cycle simulation model were developed by using EES program. To investigate the performance characteristics with operating conditions, the performance of both systems was simulated according to indoor temperature, outdoor temperature, outdoor air velocity and compressor speed. As a result, the R744 system had a better COP than R404A system for given operating condition. The cooling capacity was not increased over the outdoor air velocity of 3 m/s. Besides, the performance of R404A system was more sensitive to operating conditions compared to that of R744 system.

빌딩 내의 공기유동량 예측을 위한 누입 및 환기모델의 개발 (Development of an Infiltration and Ventilation Model for Predicting Airflow Rates within Buildings)

  • 조석호
    • 한국환경과학회지
    • /
    • 제23권2호
    • /
    • pp.207-218
    • /
    • 2014
  • A ventilation model was developed for predicting the air change per hour(ACH) in buildings and the airflow rates between zones of a multi-room building. In this model, the important parameters used in the calculation of airflow are wind velocity, wind direction, terrain effect, shielding effect by surrounding buildings, the effect of the window type and insect screening, etc. Also, the resulting set of mass balance equations required for the process of calculation of airflow rates are solved using a Conte-De Boor method. When this model was applied to the building which had been tested by Chandra et al.(1983), the comparison of predicted results by this study with measured results by Chandra et al. indicated that their variations were within -10%~+12%. Also, this model was applied to a building with five zones. As a result, when the wind velocity and direction did not change, terrain characteristics influenced the largest and window types influenced the least on building ventilation among terrain characteristics, local shieldings, and window types. Except for easterly and westerly winds, the ACH increased depending on wind velocity. The wind direction had influence on the airflow rates and directions through openings in building. Thus, this model can be available for predicting the airflow rates within buildings, and the results of this study can be useful for the quantification of airflow that is essential to the research of indoor air quality(temperature, humidity, or contaminant concentration) as well as to the design of building with high energy efficiency.

HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구 (A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC)

  • 윤성현;박준용;손덕영;최윤호;박경석
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.979-988
    • /
    • 2014
  • 자동차를 이용하는 시간이 늘어남에 따라 자동차 실내의 온열쾌적성에 대한 관심이 급증하고 있다. 그러나 아직까진 실제 자동차 중에서 공조시스템의 냉방성능은 자동차 제조사별로 온열쾌적성 지표를 통해 평가되지 않고, 실내의 공기 속도와 온도 등 열환경 기준에 의해 평가되고 있다. 또한 차 실내의 온열쾌적성을 수치해석으로 평가하는 경우 타당한 결과를 도출할 수 있는 수치기법에 대한 기준이 확립되지 않은 상황이다. 본 연구에서는 외부 열원을 모사하기 위하여 태양광선 추적모델을 사용하고, 공조시스템 작동 후 20 분까지 다양한 매개변수(공조시스템의 작동모드와 작동풍량, 인체모델 탑승조건)에 대한 자동차 실내의 온열쾌적성 평가를 수행하였다. 이를 통해 자동차 실내의 온열쾌적성 지표를 예측할 수 있는 평가모델을 도출하였다.

사례 조사를 통한 한식 음식점의 주방면적 비율과 환기시설의 적정성 조사 (Survey on the Ratio of Kitchen to Total Space and Ventilation System Capacity of Kitchens through Case Studies in Korean Foods Restaurants)

  • 장혜자;최경기;왕태환;곽동경
    • 한국식품조리과학회지
    • /
    • 제31권1호
    • /
    • pp.33-40
    • /
    • 2015
  • For the globalization of Korean food restaurants, the kitchens should be equipped with proper ventilation systems and space to keep clean and ensure food safety. This study aimed to examine the ratio of kitchen to total space of restaurant and the suitability of the ventilation systems employed at Korean food restaurants. Data were collected by on-site survey of 12 Korean foods restaurants in Seoul. Length and width of the restaurants were measured with scale. Temperatures and air velocity around the heating equipment, working area, and hood were measured with a thermal imaging camera anemometer and thermometer. Statistical analyses were conducted with the SPSS program. The average space of the restaurants was $25.7m^2$. The ratio of kitchen to space was 0.22 for restaurants sized $32m^2$, 0.28 for $33-66m^2$, 0.21 for $66.1-99m^2$, 0.16 for $99.1-148.5m^2$, and 0.35 for those above $148.5m^2$. Average maximum and minimum air velocity around the hood were 0.28 m/sec and 0.22 m/sec, respectively. Under these conditions, the temperature of the working area was $41^{\circ}C$, presenting an uncomfortable indoor temperature for kitchen employees to work. When classifying 3 groups based on the minimum and maximum air velocity, the temperatures near the cooking area and in the hood of the restaurants showed significant differences among the three groups. When the maximum air velocity was over 0.3 m/sec, the temperature of the cooking area was as $30.1^{\circ}C$, showing a significantly lower temperature (p<0.01). Based on these results, the kitchen space rate of 0.25 to the total space and a ventilation system maintaining a maximum air velocity over 0.3 m/sec were recommended for ensuring the food safety of Korean foods restaurants sized 66 to $99m^2$.

무창돈사의 환경제어 시스템 개발 (I) - 제어성능의 평가 - (Development of Environmental Control Systems for Windowless Pig-housing (I) - Assessment of Control Performance -)

  • 장홍희;장동일;임영일
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.415-424
    • /
    • 1999
  • This study was conducted to assess performances of the developed environmental control systems under various seasons of Korea. In all trials for the environmental control systems, the manure pit ventilation system in the windowless pig-housing with partly slatted floor was used. Consequently, under all seasons of Korea, the complex environmental control systems could comfortably maintain the indoor temperature (14.8~27.2$^{\circ}C$) , concentrations of noxious gases (CO2 gas : 631~1,874ppm, NH3 gas : 0.3~3.2ppm), air velocity (0.11~0.23m/s), air movement, and so on. Therefore, the performances of the complex environmental control systems were evaluated as proper as the intended.

  • PDF

다양한 덕트유동해석에 사용된 AIRVIEW의 정확성 비교에 관한 연구 (Study on the Accuracy Comparison of AIRVIEW used for various duct flows)

  • 권용일;염동석;한화택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.383-388
    • /
    • 2008
  • We are now developing a CFD program, AIRVIEW, with several numerical models and the SIMPLER solving method for constructing flow field and thermal comfort. This study is carried out for evaluating an accuracy of AIRVIEW. Comparisons of accuracy are carried out using Phoenics Version 3.4. In this study, we compare the turbulent kinetic energy distribution and local turbulent Re number obtained with Phoenics with those results simulated by AIRVIEW for three kinds of duct. It is observed from comparison of results that the turbulent kinetic energy values are significant due to the large velocity gradients in the region of flow. Numerical results for turbulent kinetic energy distribution and local turbulent Re number are that a good degree of agreement is found.

  • PDF

실증실험을 통한 측정 위치에 따른 주거공간 환기성능 평가 (Evaluation of Ventilation Performance of a Residential Unit for Different Sampling Points through Actual Field Tests)

  • 곽병창;이수만;김길태;김종엽
    • 토지주택연구
    • /
    • 제13권3호
    • /
    • pp.93-106
    • /
    • 2022
  • 일반적으로 실내 공기질을 조절하기 위해서는 환기의 역할이 중요하다. 최근 코로나-19 등 감염병의 확산으로 거주자들의 실내에서 보내는 시간이 늘어남에 따라 환기의 중요성은 더욱 높아지고 있으며, 환기성능에 대한 관심도 더욱 높아지는 추세이다. 많은 국가에서 현재 환기 성능을 파악하는 지표로서 시간당 환기횟수를 사용하고 있으며, 국내에서도 공동주택을 대상으로 시간당 0.5회 이상의 환기횟수를 확보하도록 규제하고 있다. 하지만, 선행연구 및 국내외 환기성능 평가 관련 표준을 검토한 결과 시간당 환기횟수만을 통해 실내 환기 성능을 평가하는데에는 실질적 실내 환기 성능을 평가하는 데에는 한계가 있는 것으로 나타났으며, 실질적인 환기 성능을 평가하기 위해서는 실내 국소부위를 대상으로 오염물질 저감속도와 공간내 환기 성능 균일도 등을 고려하는 것이 필요할 것이다. 이에 대해 본 연구에서는 추적가스 희석법을 이용한 실증 실험을 통해 측정 위치별 유속, 공기연령 및 환기효율을 측정하고 비교하였으며, 측정점별 조합에 따른 평균값과 공간 내 중심점에서의 측정값을 비교하여 측정점 선정에 따른 환기성능 차이를 비교 조사하였다. 본 연구 결과는 향후 실환경 기반의 주거공간 실내 환기성능을 평가하기 위한 실험절차 개발을 위한 기초자료로 활용될 수 있을 것이다.

확산포집기로 공기중 ppb 농도수준의 휘발성유기물질 포집시 확산길이와 기류변화가 시료포집속도에 미치는 영향 (The effects of face velocity and path length on the uptake rates of volatile organic compounds measured by diffusive samplers)

  • 변상훈;톰 스톡;마리아 모란디;아프샤;제이 크로스
    • 한국산업보건학회지
    • /
    • 제11권1호
    • /
    • pp.34-41
    • /
    • 2001
  • Passive samplers have been used for personal, indoor, and outdoor air monitoring of VOCs at ppb concentrations in community and office environments. The path length of modified passive sampler was shortened, so it was intended to increase an uptake rate. The performance of the modified 3M 3500 organic vapor monitor(OVM) as a tool for assessing exposures to toxic air pollutants in nonoccupational community environments was evaluated using combined controlled test atmospheres of six selected target volatile organic compounds(VOCs): benzene, methyl tert-butyl ether(MTBE), chloroform, 1,4-dichlorobenzene, tetrachloroethylene, and toluene. The experiments were conducted by exposing the dosimeters to concentrations of $50{\sim}100{\mu}g/m^3$ on six face velocity(0.00, 0.02, 0.06, 0.12, 0.20, 0.30 m/sec) for 24 hours. If the uptake rate was increased, that means that we could use the passive sampler more effectively. The uptake rates were increased linearly according to reduce the path length. Although the diffusion path length was shortened, the change of uptake rate was within ${\pm}25%$ of theoretical value, indicating that the modified passive sampler(TM) can be effectively used over the range of concentrations and environmental conditions tested with a 24-h sampling period if the face velocities were over 0.12 m/s for 6 components of VOCs. But when the face velocities were less than 0.12 m/s, uptake rates were reduced more than expected values. So, the passive sampler with the shortened path length should be used at indoor or outdoor environment where the face velocity should be over about 0.10 m/s. If the path length was shortened more, the uptake rate was more effected by starvation.

  • PDF

개방된 고분 내부의 열 환경 수치모사 (Numerical Simulation of the Thermal Environment Inside an Opened Tomb)

  • 윤영묵;전희호;이금배
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.43-50
    • /
    • 2007
  • In recent years the importance of the preservation of cultural artifacts like ancient tombs has been widely accepted domestically and internationally with increasing value of cultural artifacts. However not much technical attention has been paid for the facilities and systems to preserve these artifacts. As a part of the present study, the temperature and relative humidity inside a selected artifact, Shinkwan-ri tomb, have been monitored for a year round to improve the understanding of the indoor thermal environment. In this study, using the Computational Fluid Dynamics calculated the velocity and temperature distribution and offered basic data which are necessary for the best fitted design of tomb air-conditioning device. Through the result of this study, the generation of temperature variation was identified by natural convection. It enables us to get the possibility of humidity variation