• Title/Summary/Keyword: individual trees

Search Result 252, Processing Time 0.026 seconds

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.

A Mixed-effects Height-Diameter Model for Pinus densiflora Trees in Gangwon Province, Korea

  • Lee, Young Jin;Coble, Dean W.;Pyo, Jung Kee;Kim, Sung Ho;Lee, Woo Kyun;Choi, Jung Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.178-182
    • /
    • 2009
  • A new mixed-effects model was developed that predicts individual-tree total height for Pinus densiflora trees in Gangwon province as a function of individual-tree diameter (cm). The mixed-effects model contains two random-effects parameters. Maximum likelihood estimation was used to fit the model to 560 height-diameter observations of individual trees measured throughout Gwangwon province in 2007 as part of the National Forest Inventory Program in Korea. The new model is an improvement over fixed-effects models because it can be calibrated to a local area, such as an inventory plot or individual stand. The new model also appears to be an improvement over the Forest Resources Evaluation and Prediction Program for the ten calibration trees used in this study. An example is provided that describes how to estimate the random-effects parameters using ten calibration trees.

Individual-based Competition Analysis for Secondary Forest in Northeast China

  • Li, Fengri;Chen, Dongsheng;Lu, Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.501-507
    • /
    • 2008
  • The data of crown width with 4 directions, DBH, tree height, and coordinate for sample trees were collected from 30 permanent sample plots in secondary fore st of the Maoershan Experimental Forestry Farm, Northeast China. In this paper, the competition of individual trees in stand were discussed for secondary forest by using iterative Hegyi competition index and crown overlap index that represented the competitive and cooperative interactions among neighboring trees. Active competitors of subject tree in the competition zone were selected to calculate the iterative competition index. Using the results of crown classification based on the equal crown projection area, a new distance dependent competition index called crown overlap index (COI) was developed for secondary forest. The COI performed well in describing the crown competition rather than crown competition factor (CCF). The individual-based competition index discussed in this paper will provide more precise for developing individual tree growth models for secondary forest and it can also use to adjust the stand structure for spatial optimal management.

Studies on Competition between Individual Trees of Larix leptolepis Gordon (임목(林木)의 개체간(個體間) 경쟁효과(競爭効果) 추정(推定)에 대한 고찰(考察))

  • Lee, Dong Sup;Lee, Yeo Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.40-44
    • /
    • 1985
  • This study was carried out to know the difference in growth and degree of competition between individuals of thinned and unthinned larch stands. Annual increment and total growth were obtained from the cores sampled at breast height. The correlation between adjacent individual trees was investigated. 1) The correlation between radius growth and basal area was used to estimated the degree of competition among individual trees. 2) In estimating the degree of competition the correlation between two individual trees was better method than others. 3) Up to 9 years after planting no competition between individual trees occurred and the Night positive correlation was shown. 4) High degree of competition was observed at age of 10 years after the planting, as the correlation coefficient was getting smaller. 5) The degree of competition among individual trees increased with increase of the growth of total stand.

  • PDF

Relationship Between Growth of Individual Trees and Surrounding Density in Larch Stand (Larix leptolepis) (낙엽송림(落葉松林)의 단목생장(單木生長)과 주변밀도(周邊密度)와의 관계(關係))

  • Chang, Cheol Su
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.27-32
    • /
    • 1985
  • Individual tree growth in a given stand is considerably affected by its neighbouring trees or surrounding density. This trend is appeared more clearly in the unthinned stand. Relationship between growth of individual trees and density around them was analyzed by the use of the angle-summation method(AS method), and then multiple regression equation including variables of center trees and measures of surrounding density by the AS method was given for estimating diameter increment for the last five years and the next few years of center trees.

  • PDF

Estimation of Individual Street Trees Using Simulated Airborne LIDAR Data (모의 항공 라이다 자료를 이용한 개별 가로수의 추정)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.269-277
    • /
    • 2012
  • Street trees are one of useful urban facilities that reduce carbon dioxide and provide green space in urban areas. They are usually managed by local government, and it is effective to use aerial LIDAR data in order to acquire information such as the location, height and crown width of street tree systematically. In this research, algorithm was proposed that improves the accuracy of extracting top points of street trees and separates the region of individual street trees from aerial LIDAR data. In order to verify the proposed algorithm, a simulated aerial LIDAR data that exactly knows the number, height and crown width of street trees was created. As for the procedure of data processing, filtering that separates ground and non-ground points from LIDAR data was first conducted in order to separate the region of individual street trees. An estimated non-street tree points were then removed from non-ground points, and the top points of street trees were estimated. Region of individual street trees was determined by using the intersecting point of straight line that connects top point and ground point of street tree. Through the experiment by using simulated data, it was possible to refine wrongly estimated points occurred by determining tree tops and to determine the positional information, height, crown width of street trees through the determination of region of street trees.

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.

Relation of mortality to DBH and available area in naturally germinated Pinus densiflora populations

  • Kato, Jun;Degawa, Yousuke
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.105-111
    • /
    • 2014
  • To elucidate whether small diameter at breast height correlates with tree death in an overcrowded tree population, we analyzed self-thinning occurring over the course of 37 years in naturally established Pinus densiflora populations in Sugadaira, central Japan. As trees grew, their diameters at breast height increased and the number of trees consequently decreased. Spatial distribution, which was initially clumped, changed accordingly, first becoming random and finally uniform. We calculated the "available area" of individual trees to elucidate the contribution of this parameter to tree mortality. Small diameter at breast height was strongly correlated with tree death, with a slight correlation observed between tree death and small available area of individual trees.

Detection of Individual Trees in Human Settlement Using Airborne LiDAR Data and Deep Learning-Based Urban Green Space Map (항공 라이다와 딥러닝 기반 도시 수목 면적 지도를 이용한 개별 도시 수목 탐지)

  • Yeonsu Lee ;Bokyung Son ;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1145-1153
    • /
    • 2023
  • Urban trees play an important role in absorbing carbon dioxide from the atmosphere, improving air quality, mitigating the urban heat island effect, and providing ecosystem services. To effectively manage and conserve urban trees, accurate spatial information on their location, condition, species, and population is needed. In this study, we propose an algorithm that uses a high-resolution urban tree cover map constructed from deep learning approach to separate trees from the urban land surface and accurately detect tree locations through local maximum filtering. Instead of using a uniform filter size, we improved the tree detection performance by selecting the appropriate filter size according to the tree height in consideration of various urban growth environments. The research output, the location and height of individual trees in human settlement over Suwon, will serve as a basis for sustainable management of urban ecosystems and carbon reduction measures.