The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.
Vertical forest distribution is one of the important factors to understand various ecological mechanism such as succession, disturbance and environmental effects. LiDAR data provide information, both the horizontal and vertical distribution of forest structure. The laser scanner survey provided a point cloud, in which the x, y, and z coordinates of the points are known. The objectives of this study were 1) to analyze factors of forest structure such as individual tree isolation, tree height, canopy closure and tree density using LiDAR data and 2) to compare the forest structure between outer and interior forest. The paper conducted to extract the individual tree using watershed algorithm and to interpolate using the first return of LiDAR data for yielding digital surface model (DSM). The results of the study show characters of edge such as more isolated individual trees, higher density, lower canopy closure, and lower tree height than those of interior forest. LiDAR data is to be useful for analyzing of forest structure. Further study should be undertaken with species for more accurate results.
Lee, Young Jin;Coble, Dean W.;Pyo, Jung Kee;Kim, Sung Ho;Lee, Woo Kyun;Choi, Jung Kee
한국산림과학회지
/
제98권2호
/
pp.178-182
/
2009
A new mixed-effects model was developed that predicts individual-tree total height for Pinus densiflora trees in Gangwon province as a function of individual-tree diameter (cm). The mixed-effects model contains two random-effects parameters. Maximum likelihood estimation was used to fit the model to 560 height-diameter observations of individual trees measured throughout Gwangwon province in 2007 as part of the National Forest Inventory Program in Korea. The new model is an improvement over fixed-effects models because it can be calibrated to a local area, such as an inventory plot or individual stand. The new model also appears to be an improvement over the Forest Resources Evaluation and Prediction Program for the ten calibration trees used in this study. An example is provided that describes how to estimate the random-effects parameters using ten calibration trees.
Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.825-836
/
2003
Based on customer information and financing processes in capital market, we derived individual models by applying multi-layered perceptrons, MDA, and decision tree. Further, the results from the existing single models were compared with the results from the integrated model that was developed using genetic algorithm. This study contributes not only to verifying the existing individual models and but also to overcoming the limitations of the existing approaches. We have depended upon the approaches that compare individual models and search for the best-fit model. However, this study presents a methodology to build an integrated data mining model using genetic algorithm.
본 연구에서는 드론 정사영상과 객체추출 기법을 융합하여 개체목을 선별함과 더불어 수고를 추정할 수 있는 방법론을 제시하고자 하였다. 연구대상지는 충청남도 예산군 공주대학교 학술림에 위치한 리기다소나무림으로 간벌을 강도별로(40%, 20%, 10%, 대조구)로 조성한 시험지이다. 정사영상취득은 DJI사의 MAVIC2 PRO 드론을 이용하였으며, 촬영 범위 내 가장 높은 지형지물을 고려하여 고도를 180 m로 설정하였다. 영상왜곡을 방지하기 위하여 지상기준점 설치 및 내중첩(End lap)과 옆중첩(Side lap)을 각각 80%로 설정하였다. 영상분석 통하여 수치표면모델(DSM)과 수치지형 표고모델(DTM)을 추출하고 두 모델의 고도차를 이용해 수고모델(DCHM)을 생성하였다. 본 연구결과에 의하면, 간벌강도별 개체목 추출율은 간벌강도 40%는 109.1%, 간벌강도 20% 87.1%, 간벌강도 10% 63.5%, 대조구 56.0% 수준이었다. 개체목 별 수고특성을 추출한 결과, 간벌강도 40%는 현장조사 결과보다 약 1.43 m 낮았으며, 간벌강도 20%는 1.73 m, 간벌강도 10%는 1.88 m, 대조구는 2.22 m 낮게 측정되었다.
현재 도시화로 급증하는 온실가스는 기후변화에 커다란 영향을 미치고 있다. 이로 인해, 정부에서는 기후변화의 예방을 위하여 산소를 발생시키고 이산화탄소를 저감시키는 수목을 활용하는 다양한 방안을 모색하고 있다. 수목의 이산화탄소 저감량을 산정하기 위해서 개별 수목에 대한 정보를 추출하는 것이 필수적이다. 항공 라이다 자료는 지상의 건물 뿐만 아니라 수목에 대한 3차원 정보를 점군형태로 가지고 있다. 본 연구에서는 항공라이다 자료를 이용하여 개별 수목을 추출하는 자동화 모델을 개발하였다. 이를 위해, 수목을 추출하기 위한 방법론을 설정하고 그것을 모델로 개발하는 과정으로 진행되었으며 자동화된 모델은 ArcGIS의 모델빌더를 기반으로 하였다. 개발된 모델의 적용성을 평가하기 위해서 용인시를 대상으로 상업용 소프트웨어와 비교하였다. 실험결과 본 연구에서 개발한 자동화 모델의 추출율이 9.91% 높은 것으로 확인되었으며 상대적으로 수목추출이 효과적이라는 것을 확인할 수 있었다.
본 연구는 금융기관에서의 고객신용평가를 위한 최적의 데이터마이닝 모형을 제안한다. 이를 위해 할부금융시장에서의 고객정보 및 할부진행 과정에 대한 세부 내역을 바탕으로 다계층 퍼셉트론(Multi-Layered Perceptrons:MLP)과 다변량 판별분석(Multivariate Discrimination Analysis : MDA), 그리고 의사결정나무(Decision Tree)를 적용하여 각각의 개별모형을 도출하고 이론 유전자 알고리즘을 이용하여 통합한 최종 모형을 구해 그 결과론 각 단일모형과 비교${\cdot}$분석하였다. 그 견과 유전자 알고리즘을 통해 결합한 통합모형의 성능이 가장 우수한 것으로 나타났다. 이에 본 연구는 기존에 진행되었던 개변모형에 대한 검증은 물론, 단순히 여러 개의 모형을 비교${\cdot}$분석하여 우월한 모형을 평가하는 기존 방법론 상의 한계를 극복하기 위해 각각의 개별모형을 유전자 알고리즘을 통해 통합모형으로 구축하는 하나의 방법론을 제시하였다는데 그 의의가 있다.
Two methods of the numerical method of CPQRA(Chemical Process Quantitative Risk Analysis) and the manual method of IAEA(International Atomic Energy Agency) were used to estimate the individual risk and societal risk around the chemical plant. Where, the CPQRA is introduced to verify the theoritical background of the manual of international atomic energy agency. The Gaussian plume model which has a weather stability class D with velocity of 5m/s was applied to calculate dispersion of hazard material. Also, 8-point method was employed to the effects of accidents for wind distribution. Furthermore, historical record, FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) were used to estimate the probability or frequency of accidents. Eventually, the individual risk shows isorisk contour and the societal risk shows F-N curve around hazard facility, especially in chemical plants. Caulculated results, which both individual and societal risk, by using IAEA manual show simillar results to those of calculation by numerical method of CPQRA.
항공 Lidar 기술을 이용한 산림조사 기법은 현지조사 및 항공사진을 이용한 기존 조사방법의 한계를 극복할 수 있는 대안으로 떠오르고 있다. 본 연구에서는 국내 산림지형의 특성을 고려하여 개체목 인식 및 수고(樹高)추출을 위한 항공 Lidar자료의 기본적인 처리기법을 제시하고자 한다. 경기도 유명산 조림지를 대상으로 촬영된 항공 Lidar 원시자료로부터 비지면점을 제거하는 기법을 적용하여 순수 지표면을 표현하는 수치표고모형자료(DEM)를 생성하였다. 이렇게 제작된 DEM자료를 기반으로 비지면점에 해당하는 신호값들을 추출한 후 수관고모형(CHM)자료를 생성하였다. CHM자료에 개체목의 수고를 추출하는 필터링 기법을 개발하였다. 연구 지역의 낙엽송 및 잣나무 표본임분을 대상으로 항공사진 및 현지 측정된 자료와 비교한 결과, 개체목의 본수는 90% 이상의 정확도로 추출되었으며, 수고는 평균 1.1m 낮게 추정되었다.
본 연구의 목적은 1920년대부터 우리나라 남부지방에 대단위로 조림된 삼나무(Cryptomeria japonica D. Don)조림지를 대상으로 하여 최적의 간재적추정식을 개발코자 하였다. 남부지방의 대표적인 삼나무조림지인 6개 지역을 조사하였으며, 이들 지역에서 대표적인 31개의 표준목을 선발하여 수간석해를 실시하였다. 이 중 이용 가능한 29개체목에 대한 수간석해 자료를 이용하여 개발한 최적의 삼나무 재적추정식은 $V=-0.002908+0.000125D^{1.907114}H^{0.645131}$이 제시되었다. 이 식을 이용하여 간재적 실측치와 추정치를 사용한 동시 F-검정(절편=0와 기울기=1)을 실시한 결과, 통계적으로 유의성을 나타내지 않았다(p=0.1936). 따라서 본 연구에서 제시된 간재적 추정식은 남부지방에 조림된 삼나무의 입목 간재적표조제와 경영에 필요한 기초적 자료를 제공해 줄 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.