• Title/Summary/Keyword: individual rainfall

Search Result 72, Processing Time 0.015 seconds

Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s (2000년대 기후변화를 반영한 봄철 산불발생확률모형 개발)

  • Won, Myoungsoo;Yoon, Sukhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2016
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for practical forecasting of forest fire danger rate by reflecting the climate change for the time period of 2000yrs. Forest fire in South Korea is highly influenced by humidity, wind speed, temperature, and precipitation. To effectively forecast forest fire occurrence, we developed a forest fire danger rating model using weather factors associated with forest fire in 2000yrs. Forest fire occurrence patterns were investigated statistically to develop a forest fire danger rating index using times series weather data sets collected from 76 meteorological observation centers. The data sets were used for 11 years from 2000 to 2010. Development of the national forest fire occurrence probability model used a logistic regression analysis with forest fire occurrence data and meteorological variables. Nine probability models for individual nine provinces including Jeju Island have been developed. The results of the statistical analysis show that the logistic models (p<0.05) strongly depends on the effective and relative humidity, temperature, wind speed, and rainfall. The results of verification showed that the probability of randomly selected fires ranges from 0.687 to 0.981, which represent a relatively high accuracy of the developed model. These findings may be beneficial to the policy makers in South Korea for the prevention of forest fires.

Spatio-temporal Distribution Patterns of Lotic Benthic Macroinvertebrate Communities in Namhan-River Weir Section (남한강 보 구간 유수성 저서성 대형무척추동물의 시·공간적 분포 특성)

  • Kim, Jin-Young;Lee, Seung-Hyun;Lee, Kyung-Lak;Noh, Seongyu;Shin, Yuna;Lee, Su-Woong;Lee, Jaekwan;Won, Doo-hee;Lim, Sung-ho;Kown, Yongju;Kong, Dongsoo
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.331-344
    • /
    • 2018
  • Lotic organisms in streams are affected by natural and anthropogenic disturbances such as increase of heavy rainfall event caused by climate change and flow regime change caused by weir constructions. Based on domestic and foreign literature, 157 Korean benthic macroinvertebrate taxa were selected species as potential lotic candidates. Three shoreline sites (total 54 samples) were surveyed consecutively before ('08~'09), during ('10~'12) and after ('13~'16) the construction of the weirs (Gangcheon, Yeoju and Ipo weir) in the Namhan-River for tracing changes of lotic communities. As a result, water flow of the Ipo-wier and water quality variables such as T-N, T-P, BOD5, etc. of the weir section revealed no significant changes. Physical habitat conditions such as the flow velocity and streambed substrate evidently changed. Particulary, flow velocity measured at sampling points along with each microhabitat drastically decreased and particle size of streambed substrate steadily decreased after weir constructions. Lotic organisms also decreased after construction, especially Hydropsychidae (insecta: Trichoptera) acutely decreased from $3,526ind.\;m^{-2}$ to $2ind.\;m^{-2}$ As a result of CCA, lotic species such as Hydropsyche valvata, Hydropsyche kozhantschikovi, Cheumatopsyche brevilineata, Cheumatopsyche KUa, Macrostemum radiatum, etc. correlated with the flow velocity, streambed substrate. Therefore, the decrease of the flow velocity and substrate size after weir construction seemed to be closely related to the decrease of the individual abundances of the lotic organisms independently of water quality. In order to evaluate the influence of the ecosystem on the flow regime change more accurately, it is necessary to study the indicator species based on the resistance or preference of the flow.