• Title/Summary/Keyword: indium bonding

Search Result 26, Processing Time 0.019 seconds

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

InP Quantum Dot-Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1491-1504
    • /
    • 2012
  • InP quantum dot (QD)-organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs are capped with myristic acid (MA), which are incompatible with typical silicone encapsulants. We have introduced a new ligand, 3-aminopropyldimethylsilane (APDMS), which enables embedding the QDs into vinyl-functionalized silicones through direct chemical bonding. The exchange of ligand from MA to APDMS does not significantly affect the UV absorbance of the InP QDs, but quenches the PL to about 10% of its original value with the relative increase in surface related emission intensities, which is explained by stronger coordination of the APDMS ligands to the surface indium atoms. InP QD-organosilicon nanocomposites were synthesized by connecting the QDs using a short cross-linker such as 1,4-divinyltetramethylsilylethane (DVMSE) by the hydrosilylation reaction. The formation and changes in the optical properties of the InP QD-organosilicon nanocomposite were monitored by ultraviolet visible (UV-vis) absorbance and steady state photoluminescence (PL) spectroscopies. As the hydrosilylation reaction proceeds, the QD-organosilicon nanocomposite is formed and grows in size, causing an increase in the UV-vis absorbance due to the scattering effect. At the same time, the PL spectrum is red-shifted and, very interestingly, the PL is quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nanocomposites, namely the scattering effect, F$\ddot{o}$rster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

Photoluminescience properties for CdIn2Te4 single crystal grown by Bridgman method

  • Hong, Myung-Seok;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.379-385
    • /
    • 2006
  • Single crystal of p-$CdIn_{2}Te_{4}$ was grown in a three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by x-ray diffraction and photoluminescence measurements. From the photoluminescence spectra of the as-grown $CdIn_{2}Te_{4}$ crystal and the various heat-treated crystals, the ($D^{o}$, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Cd, while the ($A^{o}$, X) emission completely disappeared in the $CdIn_{2}Te_{4}$:Cd. However, the ($A^{o}$, X) emission in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Te was the dominant intensity like in the as-grown $CdIn_{2}Te_{4}$ crystal. These results indicated that the ($D^{o}$, X) is associated with $V_{Te}$ which acted as donor and that the ($A^{o}$, X) emission is related to $V_{Cd}$ which acted as acceptor, respectively. The p-$CdIn_{2}Te_{4}$ crystal was obviously found to be converted into n-type after annealing in Cd atmosphere. The origin of ($D^{o},{\;}A^{o}$) emission and its to phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and acceptors such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_{2}Te_{4}$ was confirmed not to form the native defects because it existed in a stable bonding form.

Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice ([InAs/GaSb] 응력 초격자에 기초한 [320×256]-FPA 적외선 열영상 모듈 제작)

  • Lee, S.J.;Noh, S.K.;Bae, S.H.;Jung, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • An infrared thermographic imaging module of [$320{\times}256$] focal-plane array (FPA) based on [InAs/GaSb] strained-layer superlattice (SLS) was fabricated, and its images were demonstrated. The p-i-n device consisted of an active layer (i) of 300-period [13/7]-ML [InAs/GaSb]-SLS and a pair of p/n-electrodes of (60/115)-period [InAs:(Be/Si)/GaSb]-SLS. FTIR photoresponse spectra taken from a test device revealed that the peak wavelength (${\lambda}_p$) and the cutoff wavelength (${\lambda}_{co}$) were approximately $3.1/2.7{\mu}m$ and $3.8{\mu}m$, respectively, and it was confirmed that the device was operated up to a temperature of 180 K. The $30/24-{\mu}m$ design rule was applied to single pixel pitch/mesa, and a standard photolithography was introduced for [$320{\times}256$]-FPA fabrication. An FPA-ROIC thermographic module was accomplished by using a $18/10-{\mu}m$ In-bump/UBM process and a flip-chip bonding technique, and the thermographic image was demonstrated by utilizing a mid-infrared camera and an image processor.