• 제목/요약/키워드: incompressible flow

검색결과 781건 처리시간 0.027초

저속 비행체 공력해석을 위한 상용 및 오픈 소스 CFD 코드 비교 (COMPARISON OF COMMERCIAL AND OPEN SOURCE CFD CODES FOR AERODYNAMIC ANALYSIS OF FLIGHT VEHICLES AT LOW SPEEDS)

  • 박동훈;김철완;이융교
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.70-80
    • /
    • 2016
  • The comparison of two commercial codes(FLUENT and STAR-CCM+) and an open-source code(OpenFOAM) are carried out for the aerodynamic analysis of flight vehicles at low speeds. Tailless blended-wing-body UCAV, main wing and propeller of HALE UAV(EAV-3) are chosen as geometries for the investigation. Using the same mesh, incompressible flow simulations are carried out and the results from three different codes are compared. In the linear region, the maximum difference of lift and drag coefficients of UCAV are found to be less than 2% and 5 counts, respectively and shows good agreement with wind tunnel test data. In a stall region, however, the reliability of RANS simulation is found to become poor and the uncertainty according to code also increases. The effect of turbulence models and meshes generated from different tools are also examined. The transition model yields better results in terms of drag which are much closer to the test data. The pitching moment is confirmed to be sensitive to the existence and the location of transition. For the case of EAV-3 wing, the difference of results with ${\kappa}-{\omega}$ SST model is increased when Reynolds number becomes low. The results for the propeller show good agreement within 1% difference of thrust. The reliability and uncertainty of three codes is found to be reasonable for the purpose of engineering use. However, the physical validity and reliability of results seem to be carefully examined when ${\kappa}-{\omega}$ SST model is used for aerodynamic simulation at low speeds or low Reynolds number conditions.

2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구 (Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem)

  • 염덕준;두훈;김영철
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3374-3383
    • /
    • 2011
  • 본 연구는 유한한 크기의 선저경사각을 갖는 2차원 쐐기형 구조물의 슬래밍 충격 현상을 수치 해석하였다. 비압축성 유체를 가정하였으며, 구조물의 입수 속도는 일정하게 유지하였다. 자유수면의 대 변형 및 동적 거동의 해석을 위해서 Geo-reconstruct(or PLIC-VOF) scheme을 사용하였다. 선저경사각이 $10^{\circ}$, $20^{\circ}$$30^{\circ}$인 경우에 대해서 해석을 수행하였으며, 각각의 선저경사각에 대하여 입수면의 격자 크기 및 입수 속도를 변화시켜 슬래밍 충격력 수치 해석 결과에 미치는 영향을 조사하였다. 수치해석 결과는 Dobrovol'skaya(1969)의 상사해(similarity solution), Wagner 방법에 기초한 점근해(asymptotic solution) 및 경계요소법(Zhao et al.(1993))에 의한 해석 결과와 비교하였다.

Symmetric Multi-Processing 시스템에서 다양한 병렬 기법 모델을 적용한 병렬 CUPID 코드의 성능분석 (Performance Analysis of the Parallel CUPID Code for Various Parallel Programming Models in Symmetric Multi-Processing System)

  • 전병진;이재룡;윤한영;최형권
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.71-79
    • /
    • 2014
  • 본 연구에서는 가압경수로 주요 기기의 고정밀 열수력 해석을 위한 CUPID(Component Unstructured Program for Interfacial Dynamics) 코드의 압력장 해석을 위한 이중공액구배법(Bi-Conjugate Gradient) 알고리즘의 병렬화를 SMP(Symmetric Multi Processing) 시스템에서 고찰한다. 비압축성 후향계단 유동문제의 병렬해석을 다양한 격자 조밀도를 가지는 격자들에 대하여 세 가지 대표적인 병렬 기법(MPI, OpenMP, 하이브리드)을 적용하여 병렬성능 비교를 수행하였다. 병렬처리 성능은 해석 문제의 크기뿐만 아니라 캐쉬 메모리 크기에도 영향을 받으므로, 전체 계산량이 매우 적거나 개별 쓰레드에 사용되는 메모리가 캐쉬 메모리보다 매우 큰 경우에는 병렬화에 의한 성능 향상이 낮음을 확인하였다. 또한, 문제 크기에 상관없이 MPI 기법이 OpenMP보다 성능이 우수했으며, 상대적으로 적은 쓰레드를 사용한 경우엔 하이브리드 기법이 가장 우수한 성능을 보였다.

벽면에 근접한 사각주 후면의 와류 유동장 수동제어 (Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall)

  • 이보성;김태윤;이도형;이동호
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.16-22
    • /
    • 2004
  • 지면엔 근접한 사각주 후면에서 발생하는 비정상 와류 배출은 지상 운송체, 교량, 건물 등의 항력 증가뿐 아니라, 동안정성에도 큰 영향을 미친다. 비압축성 평균 Navier-Stokes 방정식에 수정된 ${\varepsilon}-SST$ 난류 모델을 적용하여 사각주 하부와 지면과의 간극 유동을 해석하였다. 사각주 후류에서 와류가 발생하는 경우에는 간극에서의 평균 최대 속도가 억제된 경우에 비하여 높으며, 또한 최대 속도의 위치 또한 사각주 하부에 근접한 것을 확인하였다. 본 연구에서는 사각주 하부에 수평, 수직의 펜스를 설치하는 수동 제어기법을 적용하여 사각 주 후류의 와류 배출용 억제할 수 있다.

소형 풍력발전기 소음 저감을 위한 익형 설계 연구 (Design of Low Noise Airfoil for Use on Small Wind Turbines)

  • 김태형;이승민;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

연료분사펌프의 최적 간극 설계 (Optimal Design of Clearance in Fuel Injection Pump)

  • 홍성호;이보라;조용주;박종국
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.148-156
    • /
    • 2015
  • In the study, a design process for ensuring optimal clearance in a fuel injection pump(FIP) is suggested. Structure analysis and hydrodynamic lubrication analysis are performed to determine the optimal clearance. The FIP is simulated using Hypermesh, Abaqus 6.12 to evaluate the reduction of clearance when the maximum supply pressure is applied. The reduction in clearance is caused by the difference in the deformations between the barrel and plunger. When the deformation of the plunger is larger than that of the barrel, a reduction in clearance at the head part occurs. On the other hand, the maximum clearance reduction equals the maximum deformation in the stem part, because the deformation of barrel does not occur in this region. The clearance of FIP should be designed to be larger than maximum reduction of clearance in order to avoid contact between the plunger and barrel. In addition, the two-dimensional Reynolds equation is used to evaluate lubrication characteristics with variations of viscosity, clearance and nozzle for a laminar, incompressible, unsteady state flow. The equation is discretized using the finite difference method. The lubrication characteristics of FIP are investigated by comparing film parameter, which is the ratio of the minimum film thickness and surface roughness. The optimal clearance of FIP is to be designed by considering the maximum reduction in clearance, lubrication characteristics, machining limits and tolerance of clearance.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구 (A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD)

  • 석준;박종천;신명수;김성용
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

사각형 연료탱크 내 슬로싱 주파수 응답 해석 (Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank)

  • 조진래;이홍우;하세윤;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.95-104
    • /
    • 2003
  • 본 논문은 사각형 연료 탱크 내 비점성, 비압축성, 비회전 유동에 대한 슬로싱 주파수 응답의 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 슬로싱 운동이 작다고 가정하여 선형화된 자유표면 조건을 적용하였고, 변수분리기법을 이용하여 이론해를 구하였다. 점성 감쇠에 따른- 에너지 소산의 영향을 구현하기 위해 가상치 점성 계수를 도입하였으며, 이고 인해 공진 주파수에서 응답의 발산을 방지할 수 있나. 슬로싱 응답의 최대 진폭을 예측하기 위해 9절점 요소를 사용한 유한요소법을 이용하여 해석하였다. 슬로싱 높이, 유체 내부 동수압 및 내부 유체력의 수치 결과는 이론해와 잘 일치하였다. 유한요소 시험 프로그램을 검증한 후, 유체높이에 따른 슬로싱 주파수 응답 특성을 분석하였다.