• Title/Summary/Keyword: incompatible element

Search Result 50, Processing Time 0.029 seconds

Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen (엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정)

  • Heo, Eun Ju;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

Incompatible Element Characteristics of Ginsengs Growing by Different Soils of the Keumsan (금산지역 토양별 인삼내 비호정성 원소 특성)

  • Song, Suck-Hwan;Min, Ell-Sik
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • The ginsengs showing different ages(1, 2 and 3 years) are collected from the granite, phyllite and shale area. Keumsan and are analysed for the incompatible elements with the soils. In the soils, granite areas are high in the most of element and shale areas show high correlations among the element pairs. In the comparisons for differences of ginseng ages within the same area, granite and phyllite areas are high in the 2 year ginsengs while the shale ares are high in the 3 year ginsengs in the most of the elements. Positive correlations are dominant regardless area differences and high correlations are shown in the 3 year ginsengs, indicating the absorptions of the eligible element content with increasing ages. In the comparisons of area for the ginsengs of the same age, Rb, Cs and Ga, in the case of the granite area, are low in the 2 year ginsengs while most of elements are low in the 3 year ginsengs. High element contents are shown in the shale area, which are compared with granite and phyllite areas, indicating differences of dominant minerals. In the comparisons of the parts, upper parts are mainly high. High correlations are shown in the 3 year ginsengs, suggesting the similarities of absorption degrees within root as well as upper parts with the age. In the comparisons between soils and ginsengs, elements except Ba and Sr, are mainly high in the soils.

Formulation and evaluation of incompatible but convergent rational quadrilateral membrane elements

  • Batoz, J.L.;Hammadi, F.;Zheng, C.;Zhong, W.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This paper presents four incompatible but convergent Rational quadrilateral elements, two four-node elements (RQ4Z and RQ4B) and two five-node elements (RQ5Z and RQ5B). The difference between the so-called Rational Finite Element (Zhong and Zeng 1996) and the Free Formulation (Bergan and Nygard 1984) are discussed and compared. The importance of the mode completeness in these formulations is emphasized. Numerical results for several benchmark problems show the good performance of these elements. The two five-nodes elements RQ5Z and RQ5B, which can be viewed as complete quadratic mode elements (with seven stress modes), always give better results than the four nodes elements RQ4Z and RQ4B.

Methodology of Tolerance Analysis of Deformable Assembly (변형을 고려한 공차분석 방법론)

  • Lee, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.20-26
    • /
    • 2007
  • The new integrated CAD-CAM systems induce an increasing demand for simulation tools, which are able to simulate industrial part assembly processes by welding, gluing, riveting or bolting(more generally by fastening). Concerning fastened flexible parts, there exist no efficient computational aid on tolerance and methodology available on the field. The first part briefly presents the approach method based on the finite element method for TADA(Tolerance Analysis of Deformable Assemblies). The second part compares the results obtained by simulation using the commercial FEM code with the measurements. The principal elements of dispersion have been identified and studied on an experimental basis in order to test the robustness of the TADA model. This has enabled us to verify the model's possibilities as regards industrial constraints such as the use of incompatible meshes or the use of triangular elements and so on.

Finite Element Analysis for Actuating Performance Evaluation of LIghtweight Piezo-composite Curved Acutator (경량 압전복합재료 곡면형 작동기(LIPCA)의 작동성능 평가를 위한 유한요소 해석)

  • Gu, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1881-1886
    • /
    • 2001
  • A numerical method for actuating performance evaluation of LIPCA proposed using a finite element method. Fully coupled formulations for piezo-electric materials were introduced and 3-dimensional eight-node incompatible element was used. After verifying the developed code with typical examples, the center deflections of LIPCA were calculated and compared with the experimental result, which were in fairly agreement.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Buckling Analysis of New Construction Material(GFRP) (건설신소재(섬유보강 플라스틱관 : GFRP)의 좌굴해석에 관한 연구)

  • 조병완;조태준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • The buckling analysis of Glass Fiber Reinforced Plastic pipes was studied through a three dimentsional finite element method. In the finite element analysis, an improved degenerated shell element with incompatible modes and assumed shear strain fields are employed with 3 displacements and 2 rotations for each joints. Buckling analysis is carried out for various thicknesses and different fiber orientations. Finite element results show that the buckling load increases as the thickness does with the variation of coupling stiffness.

  • PDF

A Possibility of Dual Volcanic Chains in the Southern Part of Korea: Evidences from Geochemistry (한국 남부의 쌍화산대 가능성: 지화학적 근거)

  • Jong Gyu;Jin Seop;Maeng Eon;Kyonghee
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.249-260
    • /
    • 2000
  • The development of dual volcanic chains, parallel to the trend of the subduction trench, is observed in the southern part of Korea. Elsewhere on the Earth volcanic arcs dominantly consist of two such chains. In the southern part of Korea, two volcanic chains within a single volcanic arc was developed. Kyongsang basin, where the first volcanic chain located, and Youngdong-Kwangju depression zone where the second volcanic zone located, showed sub-parallel volcanic rock distributed areas. Concentrations of incompatible elements in the southern part of Korea samples show clear across-arc variations, with lavas from the first volcanic chain being most depleted in these elements, all incompatible element concentrations increase towards the second volcanic chain. The above across-arc variation may be caused by the difference in solid phases coexisting with the fluid phases during the dehydration processes. The concentrations of incompatible elements, Zr/Y ratios, and Rb/K ratios indicate that the second volcanic chain (Youngdong-Kwangiu depression zone) was generated by low degrees of partial melting at the deeper depth compared to the conditions of the first volcanic chain (Kyongsang basin) and residual garnet probably attributed to the their partial melting.

  • PDF