• Title/Summary/Keyword: incineration system

Search Result 144, Processing Time 0.034 seconds

Problem and Optimum Operational Strategy of Multipurpose Reservoir in Korea (우리나라 다목적 Dam 운영의 문제점과 개선방안)

  • 심순보
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF

Design of a fuzzy model predictive controller for combustion control of refuse incineration plant (쓰러기 소각로의 연소제어를 위한 퍼지모델 예측제어기 설계)

  • 박종진;강신준;남의석;김여일;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 1997
  • Refuse incineration plant operations involve many kinds of uncertain factors, such as the variable physical properties of refuse as fuel and the complexity of the burning phenomenon. This makes it very dificult to apply conventional control methods to the combustion control of the refuse. So most of the refuse incineration plant are operated by operators. In this paper, an multi-variable fuzzy model predictive controller is proposed for the combustion control of the re:fuse. Adaptive network based fuzzy inference system is used for modeling of the refuse incineration plant and multi-variable fuzzy model predictive controller is designed based on the identified fuzzy model. And computer simulation was carried out to evaluate performance of the proposed controller.

  • PDF

Chemical Agent Disposal Technology by a 2-step Process(I) (Agent Hydrolysis followed by Incineration) (화학작용제의 2단계 폐기기술(I) (작용제 가수분해 후 액중배기식 소각처리))

  • Lee, Jong-Chol;Lee, Yong-Han;Oh, Sok-Chong;Hong, Dea-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • A 2-step process for the safe disposal of chemical warfare agents(agent hydrolysis followed by incineration In the submerged-quench incinerator) was studied to obtain basic data for the design of pilot plant in the future. Sample materials used for the hydrolysis reaction were sarin(GB), sulfur mustard (HD), and methylphosphonic difluoride(DF). The hydrolysates of these materials were thermally destroyed in a submerged-quench incineration system. Experimental conditions for achieving destruction efficiency of 99.99% in both steps were established and phosphoric acid was recovered from the waste water when destroying DF hydrolysate in the incinerator. Treated water could be reused as process water for the agent hydrolysis.

Identification of a Parametric ARX Model of a Steam Generation and Exhaust Gases for Refuse Incineration Plants (소각 프린트의 증기발생 및 배기가스에 대한 파라메트릭 ARX 모델규명)

  • Hwang, Lee-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.556-562
    • /
    • 2002
  • This paper studies the identification of a combustion model, which is used to design a linear controller of a steam generation quantity and harmful exhaust gases of a Refuse Incineration Plant(RIP). Even though the RIP has strong nonlinearities and complexities, it is identified as a MIMO parametric ARX model from experimental input-output data sets. Unknown model parameters are decided from experimental input-output data sets, using system identification algorithm based on Instrumental Variables(IV) method. It is shown that the identified model well approximates the input-output combustion characteristics.

A Study on Identification of State-Space Model for Refuse Incineration Plant (쓰레기 소각플랜트의 상태공간모델 규명에 관한 연구)

  • Hwang, l-Cheol;Jeon, Chung-Hwan;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.354-362
    • /
    • 2000
  • This paper identifies a discrete-time linear combustion model of Refuse Incineration Plant(RIP) which characterizes steam generation quantity, where the RIP is considered as a MIMO system with thirteen-inputs and one-output. The structure of RIP model is described as an ARX model which are analytically obtained from the combustion dynamics. Furthermore, using the Instrumental Variable(IV) identification algorithm, model structure and unknown parameters are identified from experimental input-output data sets, In result, it is shown that the identified ARX model well approximates the input-output combustion characteristics given by experimental data sets.

Investigation of N2O Emission and Reduction Effect from MSW Incineration Plant (도시고형폐기물 소각시설에서 발생하는 N2O 발생량 조사 및 저감효과에 관한 연구)

  • Song, Hyun-Ok;Ko, Jae-Churl;Choi, Sang-Hyun;Kim, Duk-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.672-678
    • /
    • 2017
  • In this study, municipal solid waste (MSW) has collected 3 times and physico-chemical analysis has done. Nitrous oxide emissions from MSW incineration plant were measured continuously by EPA Method 18 and it was compared with the emission by calculation using the emission factor. The $N_2O$ emission of MSW incineration plant was more than twice as large as the emission by calculation. It was found that the installation of abatement facilities in MSW incineration plant is effective in achieving the greenhouse reduction targets and it can be ensure economical efficiency through emission trading system.

A Study on the Enhancement of Inventories for Precursors (NOx, SOx) Released from Open Burning of Agricultural Waste Vinyl Causing the Secondary Generation of Particulate Matters

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.2
    • /
    • pp.195-207
    • /
    • 2021
  • Background and objective: While response measures to particulate matters in rural areas are limited due to poor inventory record keeping in the agricultural sector, it is necessary to control agricultural waste vinyl and the emission of precursors released from open burning and the secondary generation of particulate matters. Currently, the open burning emission calculation method uses the definition prescribed in CAPSS by the National Institute of Environmental Research. Methods: This study presented an open burning emission calculation formula for agricultural waste vinyl, which is included as agricultural waste. As for activity data, the open burning ratio of agricultural waste vinyl, and the annual incineration volume provided in the Status Survey by the Ministry of Agriculture, Food, and Rural Affairs were applied. The emission factor was generated through incineration tests on three agricultural plastic film samples collected by the Korea Environment Corporation. Results: Among precursors, SOx and NOx were selected and their emission features were monitored with incineration experiment infrastructure based on the EPA 5G method. The highest emission concentration by agricultural waste type was concentrated in the first and second quarters. As for emission factor of SO2, it was calculated at 98.25 g/kg for mulching-use LDPE, 52.31 g/kg for greenhouse-use LDPE, and 14.40 g/kg for HDPE. As for NOx, it was calculated at 18.21 g/kg for mulching-use LDPE, 16.49 g/kg for greenhouse-use LDPE, and 10.67 g/kg for HDPE. Conclusion: This test confirmed the incineration features of PE-based plastics, ascertained the SOx emission factor that had not been included in open burning in the past, and established that low NOx emission concentration is interfered by soil mixed with livestock excretions. The findings from this study are expected to contribute to improving the system for controlling air pollutants in rural environments.

Application of AIM(Asia-Pacific Integrated Model)/Material to Korea : A Study on Effects of CO2 Emission Reduction (우리나라의 폐기물처리 통합분석모형 개발과 이산화탄소 배출저감 연구)

  • Jo, Sunghan
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.419-445
    • /
    • 2005
  • In 2002, the waste was generated about 277,533tons per day. The treatments of waste were recycling, which had accounted for almost 70%, landfill, which had accounted for 19.8%, and incineration, which had accounted for 6.5%. The energy recovery from incineration has been increased since 1995. The portion of waste in the renewable energy has been increased. Waste incineration heating system generates total 134TOE of $CO_2$ as compared to 6,800TOE of GHG from LNG boiler centralized heating system to bring 98% reduction rate of GHG emissions. We need the integrated model to examine the impacts of waste managements on economy and environments. The Asia-Pacific Integrated Model is introduced as the example of the integrated model.

  • PDF

Vaporization and condensation of metallic species in hazardous waste incineration (폐기물 소각시 생성되는 유해 중금속물질의 증발.응축현상에 대한 연구)

  • Song, Yu-Seok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1983-1993
    • /
    • 1996
  • For selected (pure and compound) metallic species effects of saturation ratio, temperature, particle size and number density on condensation mechanisms are first reviewed. The tendencies for vaporization and condensation differ between metallic species because of the significant differences in their saturation pressures. Then particle pressure of a metal vapor species at incineration temperature is calculated by simplifying waste as a compound of methane, chlorine and small amounts of metals and assuming a thermodynamic equilibrium state. Next the condition is assessed for which supersaturation of combustion gases by the species above the critical level for homogeneous condensation may occur, when the gases contain a large number of pre-existing particles such as entrained ashes. Regardless of the presence of chlorine in the waste, the homogeneous condensation of PbO vapors may occur, depending on number density of the pre-existing particles. However, when chlorine exists in the waste, the homogeneous condensation of PbCl$_2$vapors does not occur, which is similar to the case of Cd and Hg vapors. Thus these highly volatile species, PbCl$_2$, Cd, and Hg, may emit to atmosphere as vapor phase. In general, for reducing the emission of hazardous metallic species into the atmosphere, the number density of pre-existing particles has to be increased. For fixed particle number density, the temperature drop rate must be kept in low if the temperature at which a condensable vapor species emits from a incineration system is fixed, while the temperature drop rate must be kept in high if the residence time for which a condensable species stays in the system is fixed.