• 제목/요약/키워드: in-wheel

검색결과 3,335건 처리시간 0.039초

비구면 평행연삭에서의 휠구면형상 창성오차 (Wheel curve generation error of aspheric grinding in parallel grinding method)

  • 황연;;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2005
  • This paper presents a geometrical error analysis of wheel curve generation method for micro aspheric surface machining using parallel grinding method. In aspheric grinding, wheel wear in process is crucial parameter for profile error of the ground surface. To decrease wheel weal parallel grinding method is adopted. Wheel and work piece (Tungsten carbide) contact point changes during machining process. In truing process of the wheel radius is determined by the angle and distance between wheel and truer. Wheel radius error is predominantly affected by vertical deviation between the wheel rotation center and the truer center Simulation for vertical error and wheel radius error shows same tendency that expected by geometrical analysis. Experimental results show that the analysis of curve generation method matches with simulations and wheel radius errors.

  • PDF

4방식 조향장치를 적용한 관리 작업차 개발 II(4방식 조향장치 개발) (Development of Working Tractor with Four-Type Wheel Steering System II(Development of Four-Type Wheel Steering System))

  • 조현덕
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.81-86
    • /
    • 2005
  • The agricultural working tractor of this study is equipped with 4 wheel driving system developed in study 1 and 4-type wheel steering system. The wheel steering system has four type of steering methods that are front wheel steering, rear wheel steering, 4 wheel steering with opposite phase, and 4 wheel steering with corresponding phase. This study introduces the hydraulic circuit of the 4-type wheel steering system and the construction of working tractor. Judging from the field test results of the developed working tractor, it is apparent that 4-type wheel steering system has many advantages when driving in a narrow corral.

전동차 차륜 마모에 따른 차륜/레일 기하학적 접촉 특성 변화 분석 (An Analysis on the Variation of the Wheel/Rail Contact Geometry with the Wheel Wear of EMU)

  • 허현무;박준혁;유원희;박태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.854-859
    • /
    • 2008
  • In a railway vehicle, contact between wheel and rail is a peculiar characteristic and variations of wheel and rail profile influence on the dynamic characteristics of railway vehicle. Thus the variations of the wheel and rail profile are very important in railway dynamics. Recently a research relating to active steering to improve the curving performance of vehicle is progressing actively at home and abroad. In this field, a pre-study for the wheel/rail contact geometry is needed and especially the variation of the wheel/rail contact geometry with wheel wear is the key design parameter to develop the controller of the active steering bogie. In this paper, we have experimentally studied to analyze the variation of the wheel/rail contact geometry with wheel wear as a pre-study to develop the active steering bogie for electric multiple unit (EMU). For this, we have made an experiment with EMU operating in curving area. We have measured the wear profiles of the wheel of the test vehicle and analyzed the wheel/rail contact geometry with a mileage of the test vehicle. In experiment with test vehicle, we have got the useful data to design the steering controller of the wheelset.

  • PDF

차륜 낭비요인 개선을 위한 경제적 차륜관리방안 연구 (A study on economical wheel maintenance process to improve waste factors)

  • 허현무;권성태;김형진;윤춘한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.656-662
    • /
    • 2003
  • The rolling-stocks used in conventional line have suffered wheel problems due to lack of adaptability with track. These brought out severe wheel wear and inefficiency of wheel maintenance. Especially, tight wheel maintenance criteria have caused waste factors of wheel machining, these increases rolling-stock maintenance costs. Thus, this study was started to Propose the wheel maintenance plans to improve maintenance efficiency in respect to wheel maintenance process in rolling-stock workshop. Here, we describe some results

  • PDF

MBD와 FEM을 이용한 단일윤축 모델의 충돌 후 탈선거동의 해석 (Analysis of Collision-induced Derailments of a Wheel-set Model Using MBD and FEM Simulation)

  • 이준호;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1868-1873
    • /
    • 2011
  • In this paper, a theoretical formulation of a simplified wheel-set model for collision-induced derailments was evaluated by numerical simulations for the wheel-climb derailment and wheel-lift derailment types. The derailment types were classified into the wheel-climb derailment and the wheel-lift derailment according to the friction force direction of the wheel-flange. The wheel-climb derailment type was classified into Climb-up, Climb/Roll-over, and Roll-over-C, and wheel-lift derailment type was classified into Slip-up, Slip/Roll-over and Roll-over-L. To verify the theoretical equations derived for the wheel-climb derailment and the wheel-lift derailment, dynamic simulations using RecurDyn of Functionbay and Ls-Dyna of LSTC were performed and compared for some examples. The derailment predictions of the suggested theoretical formulation were in good agreement with those of the numerical simulations. The direction of the frictional force between the wheel-flange and the rail can be well predicted using the suggested derailment formulation at a initial derailment.

  • PDF

A Study of Wheel Tread Spalling Problem of $DF_{21}$ Locomotive

  • Weihua, Ma;Shihui, Luo
    • International Journal of Railway
    • /
    • 제1권2호
    • /
    • pp.31-36
    • /
    • 2008
  • $DF_{21}$ diesel locomotive was designed to satisfy the requirement of Kunming Meter track and the 2Co self-guided radial bogie was used to suit the complex curve track. There are totally 12 locomotives was served on the track. The first two locomotives were devotion running on the track since April 2003, the wheel tread splling was occurred on the middle wheel set of the two locomotives after running nearly 150 thousands km on the track of the two locomotives at August 2004. The dynamic analysis was carried out to find the reason. The wheel set longitudinal vibration resonance phenomenon was existed on the locomotive dynamic performance, and this was caused by the too big longitudinal stiffness of the journal box bar on the middle wheel set. Wheel set longitudinal vibration resonance maybe an important reason of lead to wheel tread spalling. The corresponding mend methods were put forward from the point of view of wheel set longitudinal vibration resonance. All the wheel tread of the 12 locomotives on the middle wheel set were in good condition and not occurred the wheel tread spalling after the mend till December 2007 after 350 thousands km were finished. The mechanism of the wheel tread splling and corresponding mend method was discussed in detail in this paper.

  • PDF

방음차륜의 소음진동 저감효과에 관한 연구 (A Study on the Effect of Low Noise Wheel for the Noise and Vibration Reduction)

  • 김재철;유원희;문경호
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.629-635
    • /
    • 2000
  • Wheel /rail interaction has been known as a major source of railway noise. In this paper, a low noise wheel structure is developed and its effect on noise reduction is investigated. The developed low noise wheel employees a rubber material inserted into a steel rim or mounted on the wheel surface. Since the low noise wheel has low stiffness and high damping ratio compared to a solid wheel, the measurement results show that it reduces the rolling and squeal noise. It turns out that the proposed wheel could reduce interior noise level by 4∼5dB(A) and vehicle vibration level by 7∼10 dB. Although the proposed structure seems to be promising in noise reduction of railway vehicles, the low noise wheel is to be verified in endurance and cost effect.

  • PDF

도시철도차량의 차륜마모에 따른 횡가속도 패턴분석 (A Study on the Lateral Acceleration Pattern by the shape of Worn Wheel for the Urban Railway Vehicle)

  • 양칠식;임원식;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.66-71
    • /
    • 2006
  • A geometric contact conditions of wheel/rail affect the dynamic behavior of rolling stock. Mechanical force acted on the wheel/rail causes excessive wear and increase the maintenance cost. In this study, we have studied the dynamic behavior of the urban railway vehicle with new and worn wheel by VAMPIRE program. And we have tested the accelerations of wheelset on the conventional line. The results of simulation are compared with the measuring data of field test. It shows that the acceleration of worn wheel is greater than the acceleration of new wheel in the straight track line but on the contrary, the acceleration of new wheel is greater than the acceleration of worn wheel in curved track. That results explain that the new wheel is worn out greater than the worn wheel in curved track line and need to be maintained more seriously when running in curved track line.

  • PDF

방음차륜에 의한 철도차량 소음진동저감 연구 (Study on the Effect of Elastic Wheel from the viewpoint of Noise and Vibration of railway Vehicle)

  • 유원희;김재철;문경호;서정원;팽정광
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.291-298
    • /
    • 1998
  • The object of this study is to investigate the effect of elastic wheel from the viewpoint of noise and vibration of railway vehicle. The vibration reduction was predicted from the FRF difference between elastic wheel and solid wheel by FEM simulation. The elastic wheel and solid wheel were compared in viewpoint of carbody vibration and car interior noise level. The effect of elastic wheel on the noise and vibration of subway vehicle was obtained. But, the application of elastic wheel must be reviewed in some aspect.

  • PDF

수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션 (A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF