• Title/Summary/Keyword: in-situ processing

Search Result 187, Processing Time 0.03 seconds

Fabrication of Au Nanoparticle for Au-conjugate Immuno Chemistry Probe (Au-conjugate 면역화학 진단용 금 나노입자 제조)

  • Park, Sung-Tae;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.550-554
    • /
    • 2003
  • Current nanogold cluster synthesized by chemical routine with 11 or 55 atoms of gold has been widely used for immuno chemistry probe as a form of nanocluster conjugated with biomolecules. It would be an undeveloped region that the 1 nm size of nanogold could be made by materials engineering processing. Therefore, objective of this study is to minimize the size of gold nanocluster as a function of operating temperature and chamber pressure in inert gas condensation (IGC) processing. Evaporation temperature was controlled by input current from 50 A to 65 A. Chamber pressure was controlled by argon gas with a range of 0.05 to 2 torr. The gold nanocluster by IGC was evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The gold nanocluster for TEM analysis was directly sampled with special in-situ method during the processing. Atomic force microscopy (AFM) was used to observe 3-D nanogold layer surfaces on a slide glass for the following biomolecule conjugation step. The size of gold nanoclusters had a close relationship with the processing condition such as evaporation temperature and chamber pressure. The approximately 1 nm size of nanogold was obtained at the processing condition for 1 torr at $1124 ^{\circ}C$.

Casting Lowered-ADCP and Data Processing Methods for Configuring Vertical Current Structure (해류 수직구조를 파악하기 위한 LADCP Casting 및 자료처리 방법)

  • Kim, Eung;Jeon, Dong-Chull;Shin, Chang-Woong;Kim, Dong-Guk
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.397-407
    • /
    • 2011
  • To understand the vertical structure of ocean currents from raw data observed by lowered-ADCP (LADCP), these data require post-processing. Data were processed using Krahman's version 10.8 processing software based on Matlab. It is estimated the influence of auxiliary data affecting the processed current structure. The bottom-tracked velocities and the GPS information significantly contribute the offset on reference velocities in the bottom layer and barotropic ones in the middle layer, respectively. Good quality data can be obtained when LADCP is least tilted in pitch and roll during observation. In situ application of LADCP to the (northward) volume transports of Kuroshio in the East China Sea proved to be 24.8. Sv (= $1{\times}10^6m^3s^{-1}$) in October 2007, and 28.2 Sv in June 2008, respectively. The volume transport is relatively large over the continental slope when compared to the shelf or the deep sea.

Multiple Plankton Detection and Recognition in Microscopic Images with Homogeneous Clumping and Heterogeneous Interspersion

  • Soh, Youngsung;Song, Jaehyun;Hae, Yongsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2018
  • The analysis of plankton species distribution in sea or fresh water is very important in preserving marine ecosystem health. Since manual analysis is infeasible, many automatic approaches were proposed. They usually use images from in situ towed underwater imaging sensor or specially designed, lab mounted microscopic imaging system. Normally they assume that only single plankton is present in an image so that, if there is a clumping among multiple plankton of same species (homogeneous clumping) or if there are multiple plankton of different species scattered in an image (heterogeneous interspersion), they have a difficulty in recognition. In this work, we propose a deep learning based method that can detect and recognize individual plankton in images with homogeneous clumping, heterogeneous interspersion, or combination of both.

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo;Ahn, Nam-Geun;Bae, Bong-Seok;Lee, Myoung-Woo;Park, Hee-Won;Jang, Kyoung Hwa;Cho, Byung-Goo;Han, Chang Kyun;Park, Chae Kyu;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers

  • Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.735-751
    • /
    • 2020
  • Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.

Studies on the Improvement of Utility Value of Corn Grains by Different Processing Methods I. Effects of Different Corn Processing Methods on In situ and In vitro Digestibilities in Hanwoo (옥수수 알곡의 가공처리에 의한 영양소 이용성 향상에 관한 연구 I. 한우에 있어서 옥수수 알곡의 가공처리가 In situ 및 In vitro 소화율에 미치는 영향)

  • Kim, W.Y;Kim, H.W.;Lee, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.3 no.1
    • /
    • pp.116-131
    • /
    • 2001
  • Experiments were conducted to determine effects of whole and processed corns on in situ disappearance rates of nutrients in the rumen and in vitro degradability of dry matter by rumen microorganisms. Whole corn(WC) was processed into four different types; ground corn(GC), cracked corn(CC), flaked corn(FC), and soaked corn(SC). In the in situ experiment, the rate of ruminal DM disappearance after 48 hour incubation was highest in GC(76.1%) and lowest in WC and SC(12% ; P<0.01). The rate of ruminal CP disappearance after 48 hour incubation was highest in GC and CC(48 and 38%, respectively; P<0.01). The rate of ruminal OM disappearance after 48 hour incubation was highest in GC(76.14%) and lowest in WC and SC(11.82 and 12.26%, respectively; P<0.01). In the in vitro experiment, the two-stage incubation technique was used to measure digestibilities of whole and processed corns. The digestibility of DM was higher in GC, CC and FC(86.95, 85.84 and 82.29%, respectively) than in WC(15.36%; P<0.01).

Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching

  • Lee, Ho Jae;Seo, Dong-Sun;May, Gary S.;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.395-401
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for leak detection in plasma etching system. A misprocessing is reported for significantly reduced silicon etch rate with chlorine gas, and OES is used as a supplementary sensor to analyze the gas phase species that reside in the process chamber. Potential cause of misprocessing reaches to chamber O-ring wear out, MFC leaks, and/or leak at gas delivery line, and experiments are performed to funnel down the potential of the cause. While monitoring the plasma chemistry of the process chamber using OES, the emission trace for nitrogen species is observed at the chlorine gas supply. No trace of nitrogen species is found in other than chlorine gas supply, and we found that the amount of chlorine gas is slightly fluctuating. We successfully found the root cause of the reported misprocessing which may jeopardize the quality of thin film processing. Based on a quantitative analysis of the amount of nitrogen observed in the chamber, we conclude that the source of the leak is the fitting of the chlorine mass flow controller with the amount of around 2-5 sccm.