• Title/Summary/Keyword: in-situ chemical polymerization

Search Result 79, Processing Time 0.026 seconds

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride (염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성)

  • Taehyoung Kim;Sung-Ho Jin;Jongwook Park;Yeong-Soon Gal
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2024
  • An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

On the In situ Composites Containing TLCP Polymerized in PMMA Solution (PMMA 용액에서 중합된 TLCP in situ 복합재료에 관한 연구)

  • Kim, Sung-Kug;Yun, Doo-Soo;Choi, Soo-Kyung;Bang, Moon-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.148-153
    • /
    • 1999
  • In situ composites containing a thermotropic liquid crystalline polymer were prepared by polycondensation of 1,4-bis(p-hydroxy-benzoyloxy)butane with 2-bromoterephthaloyl chloride in a poly(methyl methacrylate) solution. Morphology and mechanical, thermal properties of the composites were examined by differential scanning calorimeter(DSC), dynamic mechanical thermal analyser(DMTA), optical microscope and scanning electron microscope(SEM). The TLCP domains showed nematic phase. The glass transition temperature($T_g$) and mechanical properties of the PMMA in the composites increased with increasing the content of TLCP. The TLCP domains were finely dispersed in the PMMA matrix. The 20 wt % TLCP/PMMA composite prepared by in situ polymerization showed more improved mechanical property with finely well dispersed morphology compared with that prepared by solution blending of the same composition.

  • PDF

Separation of Caffeine and Tryptophan Using Molded Macroporous Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Rods (주조된 매크로 다공성 Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) 막대를 이용한 카페인과 트립토판의 분리)

  • Jin, Longmei;Yan, Hongyuan;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • The molded macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) rods produced by a facile molding process were polymerized in situ within a tubular mold, chromatographic column ($4.6{\times}100mm$) by free radical polymerization. It was complemented by epoxy derivatized monolithic column and chemical modification of the epoxide groups with the sulphuric acid. By variation of the polymerization conditions, such as the ratio of the monomers, the porogen (pore generating material), and the temperature, the pore size could be varied, so the retention time of the samples may be adjusted. For the mixture of caffeine and tryptophan in the prepared monolithic column, the influences of polymerization material compositions to the efficiency, selectivity, and resolution of the monolithic column were investigated.

Study on the Characteristics of Organic TFT Using Organic Insulating Layer Efficiency (유기 절연층에 따른 유기 TFT 특성 연구)

  • Pyo, Sang-Woo;Lee, Min-Woo;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.335-338
    • /
    • 2002
  • A new process for polymeric gate insulator in field-effect transistors was proposed. Fourier transform infrared absorption spectra were measured in order to identify ODPA-ODA polyimide. Its breakdown field and electrical conductivity were measured. All-organic thin-film transistors with a stacked-inverted top-contact structure were fabricated to demonstrate that thermally evaporated polyimide films could be used as a gate insulator. As a result, the transistor performances with evaporated polyimide was similar with spin-coated polyimide. It seems that the mass-productive in-situ solution-free processes for all-organic thin-film transistors are possible by using the proposed method without vacuum breaking.

Preparation of Microcapsules Containing Fragrant Oil and Its Application to Textile Finishing

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.860-863
    • /
    • 2005
  • The microcapsules containing fragrant oil as functional material were prepared by in-situ polymerization with prepolymer that was made from melamine-formaldehyde (MF) as wall material of microcapsules. The effects of polymerization variables, such as the nature and concentration of surfactants, stirring rate, and stirring time, on the size and distribution of the particles were investigated. Fourier transform-infrared spectroscopy (FT-IR), thermal analysis, particle size analysis, scanning electron microscopy (SEM) observation were used to investigate the characteristics of microcapsules. Through the FT-IR and SEM analysis, we found that the prepared microcapsules were containing fragrant oil and the shape of particle was spherical. The nature and concentration of surfactants, stirring rate, and stirring time had profound effects on the particle size and particle size distribution.

  • PDF

Bulk Polymerization of L-lactide Using Aluminium Organometallic Compound Supported on Functionalized Silica (표면 기능화된 실리카에 담지된 Al 유기금속화합물을 이용한 L-lactide 벌크중합 특성 연구)

  • Yoo, Ji Yun;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.693-698
    • /
    • 2012
  • In this study aluminum isopropyl oxide ($Al(O-i-Pr)_3$) was supported on the amine-functionalized surface of silica to synthesize high molecular weight (MW) polylactide (PLA), and it was tested for PLA polymerization behaviors. A silica was funtionalized with silane compound having amine groups, then in-situ treated with $Al(O-i-Pr)_3$. $Al(O-i-Pr)_3$ attached to amine group on silica showed activity only in the presence of MAO (methyl aluminoxane). At the polymerization temperature of $115^{\circ}C$, the conversion and the MW of PLA were increased as the amount of silane was increased. At the polymerization temperature of $130^{\circ}C$, the conversion was decreased while the MW was increased drastically and reached to MW 44000 g/mol when the amine concentration was 3.0 mmol/g. A bimodal type GPC curve was shown at the polymerization temperature of $115^{\circ}C$. As the amount of amine group increased, the peaks of GPC curve were merged. At the polymerization of $130^{\circ}C$, a unimodal GPC curve was shown. $Al(O-i-Pr)_3$ supported on amine-functionalized silica was able to produce higher MW PLA with enhanced activity compared to homogeneous $Al(O-i-Pr)_3$.

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

In situ Microfluidic Method for the Generation of Uniform PEG Microfiber (PEG 마이크로 섬유 제조를 위한 마이크로플루이딕 제조방법)

  • Choi, Chang-Hyung;Jung, Jae-Hoon;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • In this study, we presents a simple microfluidic approach for generating uniform Poly(ethylene glycol)(PEG) microfiber. Elongated flow pattern of monomer induced by sheath flow of immiscible oil as continuous phase is generated in Y-shape junction and in situ polymerization by UV exposure. For uniform microfiber, we investigate the optimized flow condition and draw phase diagram as function of Ca and Qd. At the region for stable elongated flow pattern, the microfiber generated in microfluidic chip is very uniform and highly reproducible. Importantly, the thickness of microfibers can be easily controlled by flow rate of continuous and disperse phase. We also demonstrate the feasibility for biological application as encapsulating FITC-BSA in PEG microfiber.