• Title/Summary/Keyword: in-route nearest neighbor query

Search Result 5, Processing Time 0.024 seconds

In-Route Nearest Neighbor Query Processing Algorithm with Time Constraint in Spatial Network Databases (공간 네트워크 데이터베이스에서 시간제약을 고려한 경로 내 최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Kim, Sang-Mi;Chang, Jae-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.196-200
    • /
    • 2008
  • Recently, the query processing algorithm in spatial network database (SNDB) has attracted many interests. However, there is little research on route-based query processing algorithm in SNDB. Since the moving objects moves only in spatial networks, the route-based algorithm is very useful for LBS and Telematics applications. In this paper, we analyze In-Route Nearest Neighbor (IRNN) query, which is an typical one of route-based queries, and propose a new IRNN query processing algorithm with time constraint. In addition, we show from our performance analysis that our IRNN query processing algorithm with time constraint is better on retrieval performance than the existing IRNN query processing one.

In-Route Nearest Neighbor Query Processing Algorithm with Space-constraint in Spatial Network Databases (공간 네트워크 데이터베이스에서 공간 제약을 고려한 경로 내 최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Kim, Ah-Reum;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.19-30
    • /
    • 2008
  • Recently, the query processing algorithm in the field of spatial network database(SNDB) has been attracted by many Interests. But, there is little research on route-based queries. Since the moving objects move only in spatial networks, the efficient route-based query processing algorithms, like in-route nearest neighbor(IRNN), are essential for Location-based Service(LBS) and Telematics application. However, the existing IRNN query processing algorithm has a problem that it does not consider traffic jams in the road network. In this thesis, we propose an IRNN query processing algorithm which considers space restriction. Finally, we show that space-constrained IRNN query processing algorithm is efficient compared with the existing IRNN algorithm.

  • PDF

Design of In-Route Nearest Neighbor Query Processing Algorithm with Time and Space-constraint in Spatial Network Databases (공간 네트워크 데이터베이스에서 시간 및 공간제약을 고려한 In-Route Nearest Neighbor 질의처리 알고리즘 설계)

  • Kim, Sang-Mi;Chang, Jae-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.56-61
    • /
    • 2006
  • 최근 공간 네트워크 데이터베이스를 위한 질의처리 알고리즘에 관한 연구가 많이 진행되어 왔다. 그러나 현재 좌표-기반 질의에 대한 연구는 활발히 진행중인 반면, 경로-기반 질의에 대한 연구는 매우 미흡한 실정이다. 공간 네트워크 데이터베이스에서는 이동객체가 공간 네트워크상에서만 이동하기 때문에 경로-기반 질의의 유용성이 매우 증대되므로, 경로-기반 질의에 대한 효율적인 질의처리 알고리즘 연구가 필수적이다. 따라서 본 논문에서는 경로-기반 질의의 대표적인 방법인 In-Route Nearest Neighbor 질의처리 알고리즘을 분석하여 기존 연구에서 고려하지 않은 시간 및 공간제약을 고려한 경로-기반 질의처리 알고리즘을 설계한다.

  • PDF

Countinuous k-Nearest Neighbor Query Processing Algorithm for Distributed Grid Scheme (분산 그리드 기법을 위한 연속 k-최근접 질의처리 알고리즘)

  • Kim, Young-Chang;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.9-18
    • /
    • 2009
  • Recently, due to the advanced technologies of mobile devices and wireless communication, there are many studies on telematics and LBS(location-based service) applications. because moving objects usually move on spatial networks, their locations are updated frequently, leading to the degradation of retrieval performance. To manage the frequent updates of moving objects' locations in an efficient way, a new distributed grid scheme, called DS-GRID (distributed S-GRID), and k-NN(k-nearest neighbor) query processing algorithm was proposed[1]. However, the result of k-NN query processing technique may be invalidated as the location of query and moving objects are changed. Therefore, it is necessary to study on continuous k-NN query processing algorithm. In this paper, we propose both MCE-CKNN and MBP(Monitoring in Border Point)-CKNN algorithmss are S-GRID. The MCE-CKNN algorithm splits a query route into sub-routes based on cell and seproves retrieval performance by processing query in parallel way by. In addition, the MBP-CKNN algorithm stores POIs from the border points of each grid cells and seproves retrieval performance by decreasing the number of accesses to the adjacent cells. Finally, it is shown from the performance analysis that our CKNN algorithms achieves 15-53% better retrieval performance than the Kolahdouzan's algorithm.

  • PDF

Vantage Point Metric Index Improvement for Multimedia Databases

  • Chanpisey, Uch;Lee, Sang-Kon Samuel;Lee, In-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.112-114
    • /
    • 2011
  • On multimedia databases, in order to realize the fast access method, indexing methods for the multidimension data space are used. However, since it is a premise to use the Euclid distance as the distance measure, this method lacks in flexibility. On the other hand, there are metric indexing methods which require only to satisfy distance axiom. Since metric indexing methods can also apply for distance measures other than the Euclid distance, these methods have high flexibility. This paper proposes an improved method of VP-tree which is one of the metric indexing methods. VP-tree follows the node which suits the search range from a route node at searching. And distances between a query and all objects linked from the leaf node which finally arrived are computed, and it investigates whether each object is contained in the search range. However, search speed will become slow if the number of distance calculations in a leaf node increases. Therefore, we paid attention to the candidates selection method using the triangular inequality in a leaf node. As the improved methods, we propose a method to use the nearest neighbor object point for the query as the datum point of the triangular inequality. It becomes possible to make the search range smaller and to cut down the number of times of distance calculation by these improved methods. From evaluation experiments using 10,000 image data, it was found that our proposed method could cut 5%~12% of search time of the traditional method.