• Title/Summary/Keyword: in-reactor performance

검색결과 1,226건 처리시간 0.024초

Evaluation of U-Zr Hydride Fuel for a Thorium Fuel Cycle in an RTR Concept

  • Lee, Kyung-Taek;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.52-57
    • /
    • 1998
  • In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-Zr $H_{1.6}$), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTBM 80+ and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-Zr $H_{l.6}$ fuel in the seed region without additional penalties in comparison with the standard RTR's U-Zr fuelr fuelel

  • PDF

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

일체형원자로 SMART 냉각재순환펌프의 성능예측 (Performance Prediction of Main Coolant Pump in Integral Reactor SMART)

  • 김민환;박진석;김종인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.118-125
    • /
    • 2001
  • The performance prediction of SMART MCP was performed using a computational fluid dynamics code. General capacity-head performance curve of MCP, which is provided to other design branches as design input, was obtained and it showed the typical type of axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART requires reduced power operation. A procedure for predicting the performance of SMART MCP for that case was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of sloped MCP is fixed or free to rotate in reverse direction. According to the results, $73\%$ flow rate of normal operation enters the reactor core in the case of the locked impeller. In case of the impeller free rotation, the flow rate entering the reactor core is $62.8\%$.

  • PDF

유동상 담체를 이용한 Loop Reactor에서 유기물 및 질소, 인 제거 (The Removal of Organics, Nitrogen and Phosphorus in Loop Reactor Using Fluidized Media)

  • 선용호
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.353-360
    • /
    • 2009
  • 본 연구에서는 혐기조 및 무산소조, 호기조로 구성된 상향류식 고정상 담체 반응장치와 호기조로 고정상 담체 대신에 유동상 담체를 사용한 Loop Reactor로 이루어진 장치에서 생활하수를 이용하여 성능실험을 수행한 후 HRT에 따른 유기물 및 T-N, T-P 등 오염물질의 제거 특성을 비교 분석하였다. 두 반응기 모두 평균 BOD 제거율과 SS 제거율은 HRT가 증가함에 따라 증가하다가 HRT 16 h 이상에서는 일정한 수치를 나타내고 있으며 HRT 16 h에서 고정상 담체 반응기와 Loop Reactor의 평균 BOD 제거율은 각각 86.6%, 90.9%이었으며 평균 SS 제거율은 각각 78.0%, 88.2%로 Loop Reactor의 경우가 각각 4.3%, 10.2%의 더 높은 BOD와 SS 제거율을 나타내었다. 또한 평균 $COD_{Cr}$, 제거율 및 평균 $COD_{Mn}$ 제거율은 BOD와 SS 제거율과 마찬가지로 HRT가 증가함에 따라 증가하다가 HRT 16 h에서 일정한 수치를 나타내고 있으며 고정상 담체 반응기와 Loop Reactor의 평균 $COD_{Cr}$, 제거율은 각각 63.5%, 75.2%이었으며 평균 $COD_{Mn}$ 제거율은 각각 60.7%, 73.6%로 Loop Reactor의 경우가 11.7%, 12.9% 더 높은 제거율을 나타내었다. 반면에 평균 T-N 제거율 및 T-P 제거율은 두 반응기 모두 HRT가 증가함에 따라 제거율은 계속 증가하는 양상을 보여주고 있으며 HRT 16 h에서 Loop Reactor의 경우 평균 T-N 제거율 및 평균 T-P 제거율은 각각 33.6%, 54.5%로 고정상 담체 반응기보다 14.1%, 10.8%의 더 높은 제거율을 나타내었다. 이상의 결과에서 Loop Reactor가 성능이 훨씬 더 우수하였으며 최적 HRT는 16 h임을 알 수 있었다.

멀티 플라즈마 반응기를 이용한 E. coli 소독 (E. coli Disinfection Using a Multi Plasma Reactor)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제39권2호
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.

전산 모델링을 통한 모노리스 촉매형 메탄화 반응기의 성능 특성 연구 (Computer Simulation of Methanation Reactor with Monolith Catalyst)

  • 지준화;김성철;홍진표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.425-435
    • /
    • 2014
  • Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.

태양열 이용 바이오메탄 분해 해석연구 (Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy)

  • 김하늘;이상남;이상직;김종규
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.