• 제목/요약/키워드: in-plane seismic performance

검색결과 61건 처리시간 0.022초

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.

FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구 (Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System)

  • 이혜지;김상희;양근혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.1-9
    • /
    • 2022
  • 이 연구에서는 Hwang et al.(2021a, 2021b)가 제시한 강봉 트러스 시스템과 FRP 시트로 보강된 조적벽체의 면내·외 내진성능을 비교평가하였다. 면내·외 가력에서 FRP 시트로 보강된 조적벽체의 최대 내력은 각각 무보강 조적벽체의 71% 및 85% 수준으로 순수 조적벽체의 내력을 발휘하지 못하고 더 낮은 내진 성능을 보였다. 강봉 트러스 시스템으로 보강된 조적벽체의 최대 내력은 무보강 조적벽체에 비해 약 1.8배 높았다. 강봉 트러스 시스템은 FRP 시트 부착 공법에 비해 최대 내력, 강성, 에너지 소산능력 향상에 뛰어났다. 하지만, FRP 시트로 보강된 조적벽체의 경우, FRP시트를 조적벽체의 전체에 보강함으로써 조적벽체가 과보강되었고, 실험체가 미끄러짐 파괴가 발생 강성발현 증가효과가 미미한 것으로 판단된다. 추후, FRP 시트를 조적벽체의 일부분만 보강한 실험체와 강봉 트러스 시스템으로 보강한 실험체의 내진성능을 비교하는 후속연구가 필요하다.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구 (Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill)

  • 김찬호;이승제;허석재;엄태성
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

Seismic performance of retrofitted URM walls with diagonal and vertical steel strips

  • Darbhanzi, Abbas;Marefat, Mohammad S.;Khanmohammadi, Mohammad;Moradimanesh, Amin;Zare, Hamid
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.449-458
    • /
    • 2018
  • Earthquakes have shown the vulnerability of unreinforced masonry (URM) structures. The aim of this research is to study a technique for in-plane seismic retrofitting of URM walls in which both diagonal and vertical steel strips are added to a single side of a URM wall. Specimens have been tested under quasi-static cyclic lateral load in combination with constant vertical load. The tests show that vertical and diagonal strips cause a significant increase in seismic capacity in terms of both strength (about 200%) and displacement at maximum (about 20%). Furthermore, this technique caused the failure modes of URM walls were influenced.

유연한 지붕으로 된 단층 구조물의 지진 거동과 성능 분석 (Seismic Behavior and Performance Assesment of a One-story Building with a Flexible Diaphragm)

  • 김상철;오영훈
    • 한국전산구조공학회논문집
    • /
    • 제16권4호
    • /
    • pp.377-386
    • /
    • 2003
  • 본 논문에서는 단순화 다자유도 모델링 방법을 이용하여 유연한 지붕을 갖는 l/2 축소 단층 보강조적조 건물의 지진 거동을 분석하였다. 선형 및 비선형 해석에 의한 결과들은 l/2 축소모형 단층 건물의 진동대 실험결과와 비교ㆍ분석되었다. 정확한 면내 및 면외 강성과 강도를 산정할 적절한 방법이 없기 때문에 구조모델 보정방법을 적용하여 반복적인 비교 ·분석 과정에서 각 부재의 강성과 강도변화에 따른 민감도를 평가하였다. 보정된 구조물의 특성을 사용하여 구조 재해석을 수행하였으며, 지붕구조물의 유연성이 전체 건물의 동적 거동에 미치는 영향을 분석하였다. 유연한 지붕은 전단벽의 면외 강성과 강도에 많은 영향을 미치게 되며, 강체 지붕과는 확연히 구분되는 동적 거동을 보여주었다.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.