• Title/Summary/Keyword: in-memory file system

Search Result 240, Processing Time 0.026 seconds

Mapping Cache for High-Performance Memory Mapped File I/O in Memory File Systems (메모리 파일 시스템 기반 고성능 메모리 맵 파일 입출력을 위한 매핑 캐시)

  • Kim, Jiwon;Choi, Jungsik;Han, Hwansoo
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • The desire to access data faster and the growth of next-generation memories such as non-volatile memories, contribute to the development of research on memory file systems. It is recommended that memory mapped file I/O, which has less overhead than read-write I/O, is utilized in a high-performance memory file system. Memory mapped file I/O, however, brings a page table overhead, which becomes one of the big overheads that needs to be resolved in the entire file I/O performance. We find that same overheads occur unnecessarily, because a page table of a file is removed whenever a file is opened after being closed. To remove the duplicated overhead, we propose the mapping cache, a technique that does not delete a page table of a file but saves the page table to be reused when the mapping of the file is released. We demonstrate that mapping cache improves the performance of traditional file I/O by 2.8x and web server performance by 12%.

A Mobile Flash File System - MJFFS (모바일 플래시 파일 시스템 - MJFFS)

  • 김영관;박현주
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.29-43
    • /
    • 2004
  • As the development of an information technique, gradually, mobile device is going to be miniaturized and operates at high speed. By such the requirements, the devices using a flash memory as a storage media are increasing. The flash memory consumes low power, is a small size, and has a fast access time like the main memory. But the flash memory must erase for recording and the erase cycle is limited. JFFS is a representative filesystem which reflects the characteristics of the flash memory. JFFS to be consisted of LSF structure, writes new data to the flash memory in sequential, which is not related to a file size. Mounting a filesystem or an error recovery is achieved through the sequential approach. Therefore, the mounting delay time is happened according to the file system size. This paper proposes a MJFFS to use a multi-checkpoint information to manage a mass flash file system efficiently. A MJFFS, which improves JFFS, divides a flash memory into the block for suitable to the block device, and stores file information of a checkpoint structure at fixed interval. Therefore mounting and error recovery processing reduce efficiently a number of filesystem access by collecting a smaller checkpoint information than capacity of actual files. A MJFFS will be suitable to a mobile device owing to accomplish fast mounting and error recovery using advantage of log foundation filesystem and overcoming defect of JFFS.

  • PDF

Design of a NAND Flash Memory File System to Improve System Boot Time

  • Park, Song-Hwa;Lee, Tae-Hoon;Chung, Ki-Dong
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.147-152
    • /
    • 2006
  • NAND flash memory-based embedded systems are becoming increasingly common. These embedded systems have to provide a fast boot time. In this paper, we have designed and proposed a flash file system for embedded systems that require fast booting. By using a Flash Image Area, which keeps the latest flash memory information such as types and status of all blocks, the file system mounting time can be reduced significantly. We have shown by experiments that our file system outperforms YAFFS and RFFS.

A Study on the Performance Factors of File System in General Purposed Embedded Systems (범용 임베디드 시스템에서 파일 시스템의 성능 인자 연구)

  • Choi, Jin-oh;Kim, Soo-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.187-189
    • /
    • 2012
  • The embedded systems commonly equip a file system as default to keep data. This file system is mostly constructed with flash memory as the price get lower and the performance get higher. Types of the file system implemented on the flash memory are various according to types of embedded operating systems. By the way, as the embedded systems increasingly depend on the file system, a selection of the file system type of the embedded systems influences the performance of the entire system. This thesis discusses the factors to influence the performance of entire system in construction of file system and selection of the types, and discusses the research results.

  • PDF

MNFS: Design of Mobile Multimedia File System based on NAND FLASH Memory (MNFS : NAND 플래시메모리를 기반으로 하는 모바일 멀티미디어 파일시스템의 설계)

  • Kim, Hyo-Jin;Won, You-Jip;Kim, Yo-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.497-508
    • /
    • 2008
  • Mobile Multimedia File System, MNFS, is a file system which extensively exploits NAND FLASH Memory, Since general Flash file systems does not precisely meet the criteria of mobile devices such as MP3 Player, PMP, Digital Camcorder, MNFS is designed to guarantee the optimal performance of FLASH Memory file system. Among many features MNFS provides, there are three distinguishable characteristics. MNFS guarantees, first, constant response time in sequential write requests of the file system, second, fast file system mounting time, and lastly least memory footprint. MNFS implements four schemes to provide such features, Hybrid mapping scheme to map file system metadata and user data, manipulation of user data allocation to fit allocation unit of file data into allocation unit of NAND FLASH Memory, iBAT (in core only Block Allocation Table) to minimize the metadata, and bottom-up representation of directory. Prototype implementation of MNFS was tested and measured its performance on ARM9 processor and 1Gbit NAND FLASH Memory environment. Its performance was compared with YAFFS, NAND FLASH File system, and FAT file system which use FTL. This enables to observe constant request time for sequential write request. It shows 30 times faster mounting time to YAFFS, and reduces 95% of HEAP memory consumption compared to YAFFS.

An Efficient Network System Call Interface supporting minimum memory copy (메모리 복사를 최소화화는 효율적인 네트워크 시스템 호출 인터패이스)

  • 송창용;김은기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.397-402
    • /
    • 2004
  • In this paper, we have designed and simulated a new file transmission method. This method restricts memory copy and context switching happened in traditional file transmission. This method shows an improved performance than traditional method in network environment. When the UNIX/LINUX system that uses the existing file transfer technique transmits a packet to the remote system, a memory copy between the user and kernel space occurs over twice at least. Memory copy between the user and kernel space increase a file transmission time and the number of context switching. As a result, the existing file transfer technique has a problem of deteriorating the performance of file transmission. We propose a new algorithm for solving these problems. It doesn't perform memory copy between the user and kernel space. Hence, the number of memory copy and context switching is limited to the minimum. We have modified the network related source code of LINUX kernel 2.6.0 to analyzing the performance of proposed algorithm and implement new network system calls.

Improving Log-Structured File System Performance by Utilizing Non-Volatile Memory (비휘발성 메모리를 이용한 로그 구조 파일 시스템의 성능 향상)

  • Kang, Yang-Wook;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.537-541
    • /
    • 2008
  • Log-Structured File System(LFS) is a disk based file system that is optimized for improving the write performance. LFS gathers dirty data in memory as long as possible, and flushes all dirty data sequentially at once. In a real system, however, maintaining dirty data in memory should be flushed into a disk to meet file system consistency issues even if more memory is still available. This synchronizations increase the cleaner overhead of LFS and make LFS to write down more metadata into a disk. In this paper, by adapting Non-volatile RAM(NV-RAM) we modifies LFS and virtual memory subsystem to guarantee that LFS could gather enough dirty data in the memory and reduce small disk writes. By doing so, we improves the performance of LFS by around 2.5 times than the original LFS.

Implementation of Efficient and Reliable Flash File System (효율적이고 신뢰성 있는 플래시 파일시스템의 구현)

  • Jin, Jong-Won;Lee, Tae-Hoon;Lee, Seung-Hwan;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.651-660
    • /
    • 2008
  • Flash memory is widely used in embedded systems because of its benefits such as non-volatile, shock resistant, and low power consumption. However, NAND flash memory suffers from out-place-update, limited erase cycles, and page based read/write operations. To solve these problems, YAFFS and RFFS, the flash memory file systems, are proposed. However YAFFS takes long time to mount the file system, because all the files are scattered all around flash memory. Thus YAFFS needs to fully scan the flash memory. To provide fast mounting, RFFS has been proposed. It stores all the block information, the addresses of block information and meta data to use them at mounting time. However additional operations for the meta data management are decreasing the performance of the system. This paper presents a new NAND flash file system called ERFFS (Efficient and Reliable Flash File System) which provides fast mounting and recovery with minimum mata data management. Based on the experimental results, ERFFS reduces the flash mount/recovery time and the file system overhead.

  • PDF

A Design of Expandable IC Card Operating System (확정성 있는 IC 카드 운영체제의 설계)

  • 박철한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.2
    • /
    • pp.49-60
    • /
    • 1999
  • IC 카드의 하드웨어적인 제약으로 대부분의 IC 카드는 대칭키 알고리즘을 사용하고 있지만 IC 카드 하드웨어 제조 기술의 발전으로 앞으로는 보안성이 우수한 비대 칭키 알고리즘이 많이 사용될 것이다. 그리고 IC 카드의 가장 큰 제약적 중 하나는 메모리 용량의 한계이다. 따라서 보안상 안전하면서도 메모리를 적게 사용하는 IC 카드 운영체제의 구현을 중요한 문제이다. 그래서 본 논문에서는 다양한 종류의 키 알고리즘을 수용할 수 있는 키 파일 탐색 기법을 제안하였다. 또한 데이터 파일 헤더에 잠금 필드를 삽입하여 보안성을 향상시켰으며 메모리 사용량을 줄일 수 있도록 데이터 파일 헤더만을 이용한 파일 탐색 기법과 자유 공간 탐색 기법을 제안하였다. Because of the evolution of IC card hardware fabrication technologies IC card will be able to accept asymmetric key encryption algorithm in the future. One of the most restrictive points of IC card is memory capacity. Therefore it is an important problem to design a secure IC card operating system using memory in small. In this paper we proposed a key file search mechanism using a key length field inserted in a key file header structure. The key file search mechanism makes IC card execute any key-based encryption algorithm. In addition we proposed inserting a lock field in data file header structure. The lock field intensifies the security of a data file. Finally we proposed a data file search mechanism and free space search mechanism using only data file header. The file system using these mechanisms spends smaller memory than that using a file description table and record of unallocated space.

Design and Evaluation of a Fast Boot-up Technique for Flash Memory based Computer Systems (플래시메모리 기반 컴퓨터시스템을 위한 고속 부팅 기법의 설계 및 성능평가)

  • Yim, Keun-Soo;Kim, Ji-Hong;Koh, Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.587-597
    • /
    • 2005
  • Flash memory based embedded computing systems are becoming increasingly prevalent.These systems typically have to provide an instant start-up time. However, we observe that mounting a file system toy flash memory takes 1 to 25 seconds mainly depending on the flash capacity. Since the flash chip capacity is doubled in every year, this mounting time will soon become the most dominant reason of the delay of system start-up time Therefore, in this paper, we present instant mounting techniques for flash file systems by storing the In-memory file system metadata to flash memory when unmounting the file system and reloading the stored metadata quickly when mounting the file system. These metadata snapshot techniques are specifically developed for NOR- and NAND-type flash memories, while at the same time, overcoming their physical constraints. The proposed techniques check the validity of the stored snapshot and use the proposed fast trash recovery techniques when the snapshot is Invalid. Based on the experimental results, the proposed techniques can reduce the flash mounting time by about two orders of magnitude over the existing de facto standard flash file system, JFFS2.