• 제목/요약/키워드: in-cylinder injection

검색결과 486건 처리시간 0.029초

비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구 (DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes)

  • 김민규;권오준;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구 (A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine)

  • 정우인;박찬국
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성 (Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio)

  • 차준표;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

예연소실식 디젤기관의 운전조건변화에 따른 열발생률 형태변동에 관한 고찰 (A study on the heat release rate pattern variation according to the change of operating conditions in pre-combution chamber type diesel engine)

  • 이진우;최재성;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.31-44
    • /
    • 1987
  • Nowadays, the problems of energy and environmental pollution become serious day by day and the diesel engine, which has been proved to be superior to gasoline engine with respect to fuel consumption and ecological problems of exhaust gas, has been adopted widely for various purposes from the marine diesel engine and the dynamo engine to all kinds of engine on land. Therefore, extensive parametric studies on combustion of diesel engine should be done for its desing and improvement. To predict the behavior of diesel engien according to variable operating conditions by means of cycle simulation, the reasonable pattern of heat release rate has to be asumed. But it is necessary to know the actual variation of heat release rate in order to assume the reasonable pattern of heat release rate according to the actual operating conditions. In this paper, on a high speed small bore diesel engine with pre-combustion chamber, experimental investigations were carried out to determine the relationship between the heat release pattern and parameters such as engine load and speed. And also, the theoretical investigations about the performance variations of the above diesel engine according to the predicted pattern of heat release rate variation were performed. From the above observations, it may be said that the Fanboro indicator, which was used to get the cylinder pressure, can be used to estimate a reasonable pattern of heat release rate and it is confirmed that the pattern of heat release rate for the pre-combustion type engine is different from that of the direct injection type engine.

  • PDF

흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구 (A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port)

  • 윤준규;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구 (An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR)

  • 부펜더;나빈쿠마르;전용두
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 2부
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

초음파에너지가 간접분사식 디젤기관 성능에 미치는 영향 (Effects of the Ultrasonic Energy on the IDI Diesel Engine Performance)

  • 이병오;김용국;이승진
    • 에너지공학
    • /
    • 제18권3호
    • /
    • pp.169-174
    • /
    • 2009
  • 본 연구에서는 수송용 경유를 연료로 사용하고 있는 간접분사식 디젤기관에 있어서 연료에 초음파 에너지를 조사하였을 때의 기관성능 및 배출물질 특성 변화에 대해 조사하였다. 실험은 경유에 초음파 에너지를 조사한 연료와 상용 경유를 간접분사식 디젤기관에 적용하여 다음과 같은 결론을 얻었다. 본 운전조건하에서, 초음파 에너지를 조사한 경유로 디젤기관을 운전하였을 경우,상용 경유 운전 시에 비해 지압선도, 열발생율 및 출력이 상승하고 질량연소율이 단축되었으며 제동연료소비율과 매연은 감소하였다. 또한, 보다 안정화되면서 완전한 연소가 이루어졌으며 질소산화물은 증가하였다.

자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향 (Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge)

  • 김성민;김윤제;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.