• Title/Summary/Keyword: in-cylinder flows

Search Result 255, Processing Time 0.024 seconds

On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows (비압축성 점성유동의 와도와 압력 경계조건)

  • Suh J.-C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

A NUMERICAL SIMULATION METHOD FOR FREE SURFACE FLOWS NEAR MOVING BODIES IN A FIXED RECTANGULAR GRID SYSTEM (고정된 직사각형 격자계에서 움직이는 물체주위 자유수면유동 계산을 위한 수치기법의 개발)

  • Jeong, K.L.;Lee, Y.G.;Ha, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.395-406
    • /
    • 2011
  • In this research a numerical simulation method is developed for moving body in free surface flows using fixed staggered rectangular grid system. The non-linear free surface near the body is defined by marker-density method. The body boundary is defined by line segment connecting the points where the body surface and grid line meet. Continuity equation and Navier-Stokes equations are used as governing equations and the equations are coupled with two-step projection method. The velocities and pressures of body boundary and free surface cells are calculated with simultaneous iterative method. To treat a body movement in a fixed grid system, the volume displaced by moving body is added to the divergence of the body boundary cell. For the verification of the present numerical method. vortex shedding period of advancing cylinder is calculated and the period is compared with existing experiment results. Moreover, added mass and damping coefficients of a vertically excited box are calculated and the computed results are compared with published experiment results. Impulsive pressure and water level variation due to sloshing phenomenon are simulated and the results are compared with published experiment results. Varying the plunger shape, the waves generated by plunging type wave maker are compared with the 2nd order Stokes wave theory The plunger shape generating the wave that shows the best agreement with the theory is represented.

  • PDF

Effect of Opening Partition Length on Helium-Air Exchange Flow (개구부 삽입부의 길이가 헬륨 및 공기의 치환류에 미치는 영향)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.192-200
    • /
    • 1999
  • This paper describes experimental investigations of helium-air exchange flow through parti-tioned opening. Such exchange flow may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with partitioned opening for parti-tion rations $H_p/H_1$ in the range 0 to 1 where $H_p$ and $H_1$ are partition length and height of the open-ing respecticely. In the case of $H_p/H_1$ of 0 flow passages of upward flow of the helium and down-ward flow of the air within the opening are unseparated (bidirectional) and the two flows interact exchange flow rate is minimum through range of the partition ratios, Two flow zones i.e. separat-ed(unidirectional)flow zone and unseparated(bidirectional) flow zone exist with increasing the partition. length, The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at $H_p/H_1$ of 1. As a result fo comparison of the exchange flow rates by changing the partition ration the fluids interaction in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

  • PDF

Large-scale SQP Methods for Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적제어를 위한 SQP 기법의 개발)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.675-691
    • /
    • 2002
  • The focus of this work is on the development of large-scale numerical optimization methods for optimal control of steady incompressible Navier-Stokes flows. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. We develop reduced Hessian sequential quadratic programming. Both quasi-Newton and Newton variants are developed and compared to the approach of eliminating the flow equations and variables, which is effectively the generalized reduced gradient method. Optimal control problems we solved for two-dimensional flow around a cylinder. The examples demonstrate at least an order-of-magnitude reduction in time taken, allowing the optimal solution of flow control problems in as little as half an hour on a desktop workstation.

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis (영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석)

  • Kim, Young Sang;Lim, Jae Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.25-34
    • /
    • 2016
  • Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

Effect of the separating streamline curvature on the axisymmetric backward-facing step flow (박리 유선의 곡률 변화가 축대칭 후향계단 흐름에 미치는 영향)

  • Kim, K.C.;Boo, J.S.;Yang, J.P.;Jung, J.Y.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1510-1520
    • /
    • 1996
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the separating streamline curvature on the reattachment length and to understand the structure of recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric region of turbulent boundary layer on the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrates that the reattachment length increases with increasing separating streamline curvature. It is also observed that the reverse flow velocity and turbulent kinetic energy increase with an increase in the separating streamline curvature. In addition, the behavior of maximum turbulent stresses show that the effect of separating streamline curvature is larger in the region of recirculating zone(X/H<2) than in the region of reattachment point.

Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows (횡단공기류에서의 고압 가솔린 분사시 연료분무 특성)

  • 이석환;최재준;김성수;이상용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF