• 제목/요약/키워드: in-cyclic strength degradation

검색결과 149건 처리시간 0.023초

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

Strength Degradation from Contact Fatigue in Self-toughened Glass-ceramics

  • Lee, Kee Sung;Kim, Do Kyung;Woo, Sang Kuk;Han, Moon Hee
    • The Korean Journal of Ceramics
    • /
    • 제7권2호
    • /
    • pp.63-69
    • /
    • 2001
  • We investigated strength degradations from cyclic contact fatigue in self-toughened glass-ceramics. Hertzian indentation was used to induce cyclic contact load. Dynamic fatigue was also performed with changing stress rates from 0.01 to 10000 MPa/sec. After that, strength data and fracture origins were analysed. As the number of contact cycles increased or stressing rate decreased, severe strength degradation occurred by as much as 50% because of radial cracks developed from microcrack coalescence.

  • PDF

PZT의 파괴거동 및 압전 열화특성 (Fracture Behavior and Degradation of Piezoelectric Properties in PZT)

  • 태원필;김송희;조상희
    • 한국세라믹학회지
    • /
    • 제29권10호
    • /
    • pp.806-814
    • /
    • 1992
  • The aim of this study was to investigate the change in compressive strength, freacture behavior and degradation of piezoelectric properties with compressive cyclic loading in Pb(Zr, Ti)O3 of tetragonal, morphotropic phase boundary and rhombohedral composition. The highest compressive strength was found in rhombohedral composition. After poling treatment the strength increased by 8.4% and 6.5% in tetragonal and morphotropic phase boundary compositions respectively while changed little in rhombohedral. The increase of compressive strength after poling treatment is believed to be due to the internal stress around grain boundary by domain alginment toward electric field direction in the microstructures having tetragonality and the occurrence of domain switching to the direction perpendicular to electrical field during fracture. Fracture mode relatively change from transgranular to intergranular was observed in the large grain sized tetragonal and morphotropic phase boundary compositions before and after poling but the transgranular fracture mode always remained in the rhombohedral composition. From the X-ray diffractometer analysis the domains parallel to the electric field direction is known to undergo rearrangement during the cyclic loading into random direction that is responsible for the degradation of piezoelectric property.

  • PDF

치아용 세라믹스에서의 접촉피로 및 강도저하 (Contact fatigue and strength degradation in dental ceramics)

  • 정연길;이수영;최성철
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.527-533
    • /
    • 1999
  • 치아용 대체재료로 사용되고 있는 세 가지의 세라믹스, 장석질 자기, 운모를 함유한 유리-세라믹 및 유리침윤 알루미나에 대한 접촉피로을 실제 치아의 접촉상황과 유사한 구형입자를 이용한 헤르지안 압입시험법으로 물에서 수행하였으며, 각 재료에서의 접촉손상이 강도에 미치는 영향을 고찰하였다. 초기의 손상형태는 각 재료가 갖는 미세구조에 의존하여 나타났으며, 장석질 자기는 취성거동을 나타내는 cone 형태의 균열이, 운모를 함유한 유리-세라믹은 준-소성 변형 거동을 나타내는 변형이, 그리고 유리침윤 알루미나는 두 재료의 중간거동을 나타내었다. 그러나 반복하중의 수(n=1~n=$10^6$)가 증가됨에 따라 모든 재료에서 급격한 강도저하를 나타내었으며, 파괴는 접촉피로에 의해 형성된 손상에서 일어났다. 일정하중(200N, 500N 및 1000N)에서 반복하중의 수가 증가됨에 따라 두 번의 강도저하가 일어났으며, 첫 번째의 강도저하는 cone 형태의 균열이 주 요인으로 작용되었으며, 두 번째 강도저하는 반복하중에 따른 radial 형태의 균열에 의해 일어났다. 이러한 radial 형태의 균열발생은 각 재료에서 급격한 강도저하를 가져왔으며, 계속적인 반복하중으로 재료의 파괴를 유발시켰다. 반복하중의 수를 고정시킨 수 압입하중의 변화에 따른 강도저하에 대한 고찰을 통해 장석질 자기가 접촉피로에 대한 손상내구성을 갖음을 알 수 있었다.

  • PDF

주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구 (A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading)

  • 이희석;박연준;유광호;이희근
    • 터널과지하공간
    • /
    • 제9권4호
    • /
    • pp.350-363
    • /
    • 1999
  • 주기전단하중 하의 암석 절리에 대한 역학적 거동을 규명하기 위해 정밀 주기전단시험 장치를 설계·제작하였다. 실험실에서 황등화강암과 여산대리석 인공 절리 시료로 펑면절리와 거친 절리에 대해 일련의 주기전단시험을 실시하였다. 시료에 대한 레이저 변위계를 이용한 3차원 거칠기 측정을통해 절리의 거칠기 특성을규명하였다. 주기전단시험 결과를 통해 주기전단 과정의 단계별 거동 특성과하중과제하시의 거동 차이, 전단거동의 이방성 등을고찰하였다. 거친 절리면의 역학적 거동 특성은 주로 2차 거칠기의 영향과 암석 재료의 높은 강도에 영향을 받았다. 주기전단시 거친 절리에 대한 돌출부 손상이 지수적인 거칢각 손상 법칙을 따름을 실험적으로 검증하였으며, 수직응력파 거칠기 종류, 하중 단계에 따라 돌출부들의 손상 기구가 다름을 확인하였다.

  • PDF

Mechanical strength of FBG sensor exposed to cyclic thermal load for structural health monitoring

  • Kim, Heonyoung;Kang, Donghoon;Kim, Dae-Hyun
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.335-340
    • /
    • 2017
  • Fiber Bragg grating (FBG) sensors are applied to structural health monitoring (SHM) in many areas due to their unique advantages such as ease of multiplexing and capability of absolute measurement. However, they are exposed to cyclic thermal load, generally in the temperature range of $-20^{\circ}C$ to $60^{\circ}C$, in railways during a long-term SHM and the cyclic thermal load can affect the mechanical strength of FBGs. In this paper, the effects of both cyclic thermal load and the reflectivity of FBGs on the mechanical strength are investigated though tension tests of FBG specimens after they are aged in a thermal chamber with temperature changes in a range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Results from tension tests reveal that the mechanical strength of FBGs decreases about 8% as the thermal cycle increases to 100 cycles; the mechanical strength then remains steady until 300 cycles. Otherwise, the mechanical strength of FBGs with reflectivity of 6dB (70%) and 10dB (90%) exhibits degradation values of about 6% and 12%, respectively, compared to that with reflectivity of 3dB (50%) at 300 cycles. SEM photos of the Bragg grating parts also show defects that cause their strength degradation. Consequently, it should be considered that mechanical strength of FBGs can be degraded by both thermal cycles and the reflectivity if the FBGs are exposed to repetitive thermal load during a long-term SHM.

$MnO_2$를 첨가한 PZT 세라믹스의 압전열화 및 기계적 특성 (The Piezoelectric Degradation and Mechanical Properties in PZT Ceramics with $MnO_2$ Addition)

  • 김종범;최성룡;윤여범;태원필;김송희
    • 한국세라믹학회지
    • /
    • 제34권3호
    • /
    • pp.257-264
    • /
    • 1997
  • MPB조성영역에 MnO2를 첨가한 압전체를 제조하여 분극처리후에 반복압축응력을 부여함에 따른 압전열화 현상을 조사하고 분극처리 전후의 굽힘강도의 변화 및 파괴특성을 연구하였다. MnO2를 0.25wt.% 첨가한 시편에서 가장 적은 열화현상이 일어났다. 굽힘강도는 분극처리 후 하중방향에 평행한 방향으로 분극처리한 시편이 분극처리 전보다 높은 강도를 나타내었고, 수직한 방향으로 분극처리한 시편은 낮은 값을 나타내었다. 이는 분극처리시 발생하는 전계방향으로 압축잔류응력, 직각방향으로 인장잔류응력 때문인 것으로 사료된다.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

직접단순전단시험을 통한 세립토의 강도와 강성저하 예측 (Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST))

  • 송병웅;안원일재;김정호;최인걸;양태선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF