• Title/Summary/Keyword: in-core flux sensor

Search Result 22, Processing Time 0.029 seconds

Estimation of the Nuclear Power Peaking Factor Using In-core Sensor Signals

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Ki-Bog;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.420-429
    • /
    • 2004
  • The local power density should be estimated accurately to prevent fuel rod melting. The local power density at the hottest part of a hot fuel rod, which is described by the power peaking factor, is more important information than the local power density at any other position in a reactor core. Therefore, in this work, the power peaking factor, which is defined as the highest local power density to the average power density in a reactor core, is estimated by fuzzy neural networks using numerous measured signals of the reactor coolant system. The fuzzy neural networks are trained using a training data set and are verified with another test data set. They are then applied to the first fuel cycle of Yonggwang nuclear power plant unit 3. The estimation accuracy of the power peaking factor is 0.45% based on the relative $2_{\sigma}$ error by using the fuzzy neural networks without the in-core neutron flux sensors signals input. A value of 0.23% is obtained with the in-core neutron flux sensors signals, which is sufficiently accurate for use in local power density monitoring.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Improved Linearity and Saturation of Current Sensor by Laminating Silicon Steel and Fermalloy (퍼멀로이와 실리콘스틸의 적층 통한 전류센서의 선형성 및 포화도 개선)

  • Shin, Jung-Won;Choi, Bong-Seok;Ha, Yeong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.194-201
    • /
    • 2015
  • The current sensor is used in industrial devices and power utilities. Core materials of these current sensors are divided into mainly two groups as silicon steel and fermalloy. Silicon steel has a wide saturation bandwidth but low sensitivity during low-current, whereas permalloy has a short saturation bandwidth but high sensitivity during low-current. In this paper, laminated silicon steel and permalloy by equal ratio is proposed to improve the linearity and saturation of current sensor. It is proved that the proposed core material has larger bandwidth than fermalloy as well as higher sensitivity than silicon steel. When comparing simulation results by FLUX 3D, the proposed method has also better performance than the previous core materials.

High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core

  • Choi, Won-Youl;Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • We present a micro fluxgate magnetic sensor having solenoid coils and racetrack shaped magnetic core, which was designed to decrease the .operating power and magnetic flux leakage. Electroplated copper coils of $6\;{\mu}m$ thickness and the core of $3\;{\mu}m$ thickness were separated by benzocyclobutane (BCB) having a high insulation and good planarization characters. Permalloy $(Ni_{0.8}Fe_{0.2})$ as a magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The core had the high DC effective permeability of $\~1,300$ and coercive field of $\~0.1$ Oe. The fabricated fluxgate sensor had the very small actual size of $3.0\times1.7\;mm^2$. The fluxgate sensor with a racetrack shaped core had the high sensitivity .of $\~350$ V/T at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.

The Performance of Micro Fluxgate Sensor with Magnetic Core Shape (자성체 코어 형상에 따른 마이크로 플럭스게이트 센서의 검출 특성)

  • 조중희;최원열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.508-514
    • /
    • 2004
  • A fluxgate magnetic sensor consists of a solenoid excitation coil, pick-up coil, and magnetic core. We presents the effect of magnetic core shape in a micromachined fluxgate sensor. To observe the performance of fluxgate sensor with magnetic core side width and gap, side width of 125 ${\mu}{\textrm}{m}$, 250 ${\mu}{\textrm}{m}$, and 500 ${\mu}{\textrm}{m}$ were designed in a rectangular-ring shaped core and the gaps of 0 ${\mu}{\textrm}{m}$, 50 ${\mu}{\textrm}{m}$, and 100 ${\mu}{\textrm}{m}$ were also fabricated in a racetrack shaped core. The solenoid coils and magnetic core were separated by benzocyclobutane(BCB) which had high insulation and good planarization characters. Copper coil patterns of 10 ${\mu}{\textrm}{m}$ width and 6${\mu}{\textrm}{m}$ thickness were electroplated on Ti(300 $\AA$) / Cu(1500 $\AA$) seed layers. 3 ${\mu}{\textrm}{m}$ thick N $i_{0.8}$F $e_{0.2.}$(permalloy) film for the magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The magnetic core had the high DC effective permeability of ∼1,300 and coercive field of ∼0.1 Oe. Because the magnetic cores of 500 ${\mu}{\textrm}{m}$ side width and 0 gap had a low magnetic flux leakage, high sensitivity of ∼350 V/T were measured at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. The power consumption of ∼14 ㎽ was measured. The fabricated fluxgate sensor had the very small actual size of 3.0${\times}$1.7 $\textrm{mm}^2$. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.m.m.m.

Annealing Effects of Amorphous Cores for the Application of Flux-gate Sensors (Flux-gate 센서용 비정질 코아의 열처리효과)

  • 김용준;손대락;손동환
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.3
    • /
    • pp.134-140
    • /
    • 2001
  • Flux-gate magnetometer was developed in 1930's, and it has been widely used for the low magnetic field measurements. In this work, we have employed amorphous ribbon 2714A produced by Allied Chem. Co. as sensor core material. To develop low noise, low power consumption, and high reliability flux-gate magnetometer, we have measured ac magnetic properties depending on the annealing conditions. As quenched state amorphous core shows high noise level and ac magnetic properties were changed under the condition of accelerated aging test, but amorphous ribbon, which was annealed under 350 $\^{C}$ during 1 hour, shows low noise level of 0.1 nT in the frequency range of dc∼10 Hz which was 10 times better than the as quenched amorphous ribbon. Under accelerated aging test, ac magnetic properties such as squareness and coercivity of the annealed samples show higher reliability and approached to a certain limiting value as exponential function. We can see that high reliability and low noise flux-gate magnetometer could be developed, if we consider this ac magnetic properties change in the sensor design.

  • PDF

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.

MEMS-BASED MICRO FLUXGATE SENSOR USING SOLENOID EXCITATION AND PICK-UP COILS (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.172-176
    • /
    • 2002
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structured solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20um width and 3um thickness is electroplated on Cr(300${\AA}$)/Au(1500${\AA}$) films for the pick-up(42turn) and the excitation(24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3 $\mu\textrm{m}$ is obtained under 2000Gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ∼1,100 and coercive field of -0.1Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150V/T at the excitation frequency of 2MHz and the excitation voltage of 4.4Vp-p. The power consumption is estimated to be 50mW.

  • PDF

MEMS-based Micro Fluxgate Sensor Using Solenoid Excitation and Pick-up Coils (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.120-124
    • /
    • 2003
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structure solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20${\mu}$m width and 3${\mu}$m thickness is electroplated on Cr (300${\AA}$) / Au (1500${\AA}$) films for the pick-up (42turn) and the excitation (24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3${\mu}$m is obtained under 2000 gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ~1,100 and coercive field of ~0.1 Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150 V/T at the excitation frequency of 2 MHz and the excitation voltage of 4.4 V$\_$p p/. The power consumption is estimated to be 50mW.

Comparisons of Linear Characteristic for Shape of Stator Teeth of Hall Effect Torque Sensor

  • Lee, Boram;Kim, Young Sun;Park, Il Han
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.285-290
    • /
    • 2012
  • Electric Power Steering (EPS) system is superior to conventional Hydraulic Power Steering (HPS) system in aspect of fuel economy and environmental concerns. The EPS system consists of torque sensor, electric motor, ECU (Electric Control Unit), gears and etc. Among the elements, the torque sensor is one of the core technologies of which output signal is used for main input of EPS controller. Usually, the torque sensor has used torsion bar to transform torsion angle into torque and needs linear characteristic in terms of flux variation with respect to rotation angle of permanent magnet. The torsion angle of both ends of a torsion bar is measured by a contact variable resistor. In this paper, the sensor is accurately analyzed using 3D finite element method and its characteristics with respect to four different shapes of the stator teeth are compared. The four shapes are rectangular, triangular, trapezoidal and circular type.