• Title/Summary/Keyword: in vivo imaging

Search Result 388, Processing Time 0.03 seconds

Intraoral scanning of the edentulous jaw without additional markers: An in vivo validation study on scanning precision and registration of an intraoral scan with a cone-beam computed tomography scan

  • Julie Tilly Deferm;Frank Baan;Johan Nijsink;Luc Verhamme;Thomas Maal;Gert Meijer
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Purpose: A fully digital approach to oral prosthodontic rehabilitation requires the possibility of combining (i.e., registering) digital documentation from different sources. This becomes more complex in an edentulous jaw, as fixed dental markers to perform reliable registration are lacking. This validation study aimed to evaluate the reproducibility of 1) intraoral scanning and 2) soft tissue-based registration of an intraoral scan with a cone-beam computed tomography (CBCT) scan for a fully edentulous upper jaw. Materials and Methods: Two observers independently performed intraoral scans of the upper jaw in 14 fully edentulous patients. The palatal vault of both surface models was aligned, and the inter-observer variability was assessed by calculating the mean inter-surface distance at the level of the alveolar crest. Additionally, a CBCT scan of all patients was obtained and a soft tissue surface model was generated using patient-specific gray values. This CBCT soft tissue model was registered with the intraoral scans of both observers, and the intraclass correlation coefficient(ICC) was calculated to evaluate the reproducibility of the registration method. Results: The mean inter-observer deviation when performing an intraoral scan of the fully edentulous upper jaw was 0.10±0.09 mm. The inter-observer agreement for the soft tissue-based registration method was excellent(ICC=0.94; 95% confidence interval, 0.81-0.98). Conclusion: Even when teeth are lacking, intraoral scanning of the jaw and soft tissue-based registration of an intraoral scan with a CBCT scan can be performed with a high degree of precision.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

A Study on Accuracy and Usefulness of In-vivo Dosimetry in Proton Therapy (양성자 치료에서 생체 내 선량측정 검출기(In-vivo dosimety)의 정확성과 유용성에 관한 연구)

  • Kim, Sunyoung;Choi, Jaehyock;Won, Huisu;Hong, Joowan;Cho, Jaehwan;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • In this study, the authors attempted to measure the skin dose by irradiating the actual dose on to the TLD(Thermo-Luminescence Dosimeter) and EBT3 Film used as the In-vivo dosimetry after planning the same treatment as the actual patient on a Phantom, because the erythema or dermatitis is frequently occurred on the patients' skin at the time of the proton therapy of medulloblastoma patient receiving the proton therapy. They intended to know whether there is the usefulness for the dosimetry of skin by the comparative analysis of the measured dose values with the treatment planned skin dose. The CT scan from the Brain to the Pelvis was done by placing a phantom on the CSI(Cranio-spinal irradiation) Set-up position of Medulloblastoma, and the treatment Isocenter point was aligned by using DIPS(Digital Image Positioning System) in the treatment room after planning a proton therapy. The treatment Isocenter point of 5 areas that the proton beam was entered into them, and Markers of 2 areas shown in the Phantom during CT scans, that is, in all 7 points, TLD and EBT3 Film pre-calibrated are alternatively attached, and the proton beam that the treatment was planned, was irradiated by 10 times, respectively. As a result of the comparative analysis of the average value calculated from the result values obtained by the repeated measurement of 10 times with the Skin Dose measured in the treatment planning system, the measured dose values of 6 points, except for one point that the accurate measurement was lacked due to the measurement position with a difficulty showed the distribution of the absolute dose value ${\pm}2%$ in both TLD and EBT Film. In conclusion, in this study, the clinical usefulness of the TLD and EBT3 Film for the Enterance skin dose measurement in the first proton therapy in Korea was confirmed.

Gadolinium Complexes of Bifunctional Diethylenetriaminepentaacetic Acid (DTPA)-bis(amides) as Copper Responsive Smart Magnetic Resonance Imaging Contrast Agents (MRI CAs)

  • Nam, Ki Soo;Park, Ji-Ae;Jung, Ki-Hye;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2900-2904
    • /
    • 2013
  • We present the synthesis and characterization of DTPA-bis(histidylamide) (1a), DTPA-bis(aspartamide) (1b), and their gadolinium complexes of the type $[Gd(L)(H_2O)]$ (2a:L = 1a; 2b:L = 1b). Thermodynamic stabilities and $R_1$ relaxivities of 2a-b compare well with Omniscan$^{(R)}$, a well-known commercial, extracellular (ECF) MRI CA which adopts the DTPA-bis(amide) framework for the chelate: $R_1$ = 5.5 and 5.1 $mM^{-1}$ for 2a and 2b, respectively. Addition of the Cu(II) ion to a solution containing 2b triggers relaxivity enhancement to raise $R_1$ as high as 15.3 $mM^{-1}$, which corresponds to a 300% enhancement. Such an increase levels off at the concentration beyond two equiv. of Cu(II), suggesting the formation of a trimetallic ($Gd/Cu_2$) complex in situ. Such a relaxivity increase is almost negligible with Zn(II) and other endogenous ions such as Na(I), K(I), Mg(II), and Ca(II). In vivo MR images and the signal-to-noise ratio (SNR) obtained with an aqueous mixture of 2b and Cu(II) ion in an 1:2 ratio demonstrate the potentiality of 2 as a copper responsive MRI CA.

Neuronal Dysfunction in Patients with Chronic Alcoholism Evaluated by In Vivo $^1H$ Magnetic Resonance Spectroscopy (알콜중독환자의 신경기능 장애: 생체 양성자 자기공명분광 연구)

  • Bo-Young Choe;Euy-Neyng Kim;Chang-Wook Lee;In-Ho Baik;Kwang-Soo Lee;Byung-Chul Son;Heung-Jae Chun;Hyoung-Koo Lee;Tae-Suk Suh
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 2000
  • Purpose : With the use of localized, water-suppressed in vivo $^1H$ magnetic resonance spectroscopy (MRS), we evaluated the proton metabolic alterations in patients with chronic alcoholism and healthy normal controls. Material and Methods : Patients with chronic alcoholism (N = 10) and normal control subjects (N = 10) underwent MRS examinations using a stimulated echo acquisition mode (STEAM) pulse sequence with $2{\times}2{\times}2{\;}\textrm{cm}^3$ volume of interest (VOI) in the left cerebellum and basal ganglia. Proton metabolite ratios relative to creative (Cr) were obtained using a Marquart algorithm. Results : The specific feature in patients with chronic alcoholism was a significant decrease of N-acetylaspartate (NAA)/Cr ratio in the left cerebellum, compared with normal controls. No clear correlation of other metabolite ratios such as choline (Cho)/Cr and inositols (Ins)/Cr was established. Conclusion : Our preliminary study suggests that the reduction of NAA/Cr ratio may indicate neuronal loss in patients with chronic alcoholism. Thus, in vivo 1H MRS may be a useful modality in the clinical evaluation of patients with chronic alcoholism based on the proton metabolite ratios.

  • PDF

Feasibility of $In$ $vivo$ Proton Magnetic Resonance Spectroscopy for Lung Cancer (폐암의 생체 수소자기공명분광법의 실행가능성)

  • Yoon, Soon-Ho;Park, Chang-Min;Lee, Chang-Hyun;Song, In-Chan;Lee, Hyun-Ju;Goo, Jin-Mo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Purpose : To investigate the feasibility of in vivo proton magnetic resonance spectroscopy (MRS) for evaluation of lung cancer. Materials and Methods: This prospective study was approved by the institutional review board of our hospital and informed consent was obtained in all patients. Ten patients (7 men, 3 women; mean age, 64.4) with pathologicallyproven lung cancer (mean, 56.8 mm; range, 44-77 mm) were enrolled to 1.5 T MRS using a single-voxel respiration-triggered point-resolved spectroscopic sequence. Technical success rate and the reason of technical failure, if any, were investigated. Results: Out of 10 lung cancers, analyzable MRS spectra were obtained in 8 tumors (technical success rate, 80%). Two MRS datasets were not able to be analyzed due to serious baseline distortion. Choline and lipid signals were detected as major metabolites in analyzable MRS spectra. Conclusion: In vivo proton MRS method using a single-voxel respiration-triggered point-resolved spectroscopic sequence is feasible in obtaining the MR spectra of lung cancer because these spectra were analyzable and high success rate was shown in our study although there was the limitation of small patient group.

In Vivo H-1 MR Spectroscopy of Intracranial solid Tumors (두개강내 고형성 종양의 H-1 자기공명분광법)

  • 성수옥;장기현;한문희;연경모;한만청
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.86-93
    • /
    • 1997
  • Purpose: To assess the ability of in vivo H-1 MRS to determine the degree of malignancy and to characterize the histopathologic type of intracranial solid tumors. Materials and Methods: In vivo H-1 MR spectra of the pathologically-proven 81 intracranial soild tumors (low-grade glioma 17 cases, high-grade glioma 31 cases, lymphoma 9 cases, meningioma 8 cases, central neurocytoma 4 cases, medulloblastoma 3 cases, PNET 3 cases, metastasis 2 cases, others 4 cases) were analyzed. H-1 MR spectroscopy was performed on a 1.5T MR unit using PRESS sequence with a TR of 2000ms, a TE of 270 or 135ms and a voxel size of $2{\times}2{\times}2cm^3$ for all spectra. N-acetyl aspartate (NAA)/Creatine complex(Cr), Choline complex (Cho)/Cr, and lactate (Lac)/Cr ratios were measured on the peak heights of each resonance and compared among the different tumors. Results: All intracranial solid tumors demonstrated decreased NAA, elevated Cho and lactate, and variable Cr levels. All tumors showed increased Cho/Cr and Lac/Cr, whereas NAA/Cr level was decreased. Mean Cho/Cr and Lac/Cr ratios were significantly higher in high-grade gliomas than in low-grade gliomas. However, NAA/Cr ratio showed no significant difference between low-grade and high-grade gliomas. Very high Cho peaks were seen in lymphomas, meningiomas, medulloblastomas, and neurocytomas in addition to high-grade gliomas. Conclusion: H-1 MRS may be useful in differentiating between low-grade and high-grade gliomas, however cannot characterize the histologic types or subtypes of tumors.

  • PDF

Nuclear Imaging Evaluation of Galactosylation of Chitosan (핵의학 영상을 이용한 chitosan의 galactosylation 효과에 대한 평가)

  • Jeong, Hwan-Jeong;Kim, Eun-Mi;Park, In-Kyu;Cho, Chong-Su;Kim, Chang-Guhn;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Purpose: Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelator, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Methods and Materials: Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan. Cytotoxicity of $^{99m}Tc$-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with $^{99m}Tc$-GMC and $^{99m}Tc$-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. Results: The results of MTT assay indicated that $^{99m}Tc$-GMC was non-toxic. $^{99m}Tc$-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, $^{99m}Tc$-MC showed faint liver uptake. $^{99m}Tc$-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Conclusion: Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetabililty is a clear example of the great benefit proffered by nuclear imaging.

Therapeutic radionuclides (치료용 방사성동위원소)

  • Choi, Sun-Ju;Hong, Young-Don;Lee, So-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

Radioimmunotherapy in Head and Neck Cancer (두경부암에서 방사면역치료의 역할)

  • Choi, Ik Joon
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.61 no.12
    • /
    • pp.637-643
    • /
    • 2018
  • Radioimmunotherapy (RIT) is a therapy that takes advantage of the "cross-fire" effect of emitted radiation by radionuclides conjugated to tumor-directed monoclonal antibodies (mAb) (including those fragments) or peptides. While RIT has been successfully employed for the treatment of lymphoma, mostly with radiolabeled antibodies against CD20 [$^{90}yttrium$ ($^{90}Y$)-ibritumomab tiuxetan; $Zevalin^{(R)}$ and $^{131}iodine$ ($^{131}I)-tositumomab$; $Bexxar^{(R)}$], its use in solid tumors is more challenging, so far. Immuno-PET, a tool for tracking and quantification of mAbs with PET in vivo, is an exciting novel option to improve diagnostic imaging and guide mAb-based therapy. RIT in solid tumors including head and neck cancer may be an alternative treatment with advances in various biological, chemical, and treatment procedures, and it may help to reduce unnecessary exposure and enhance the therapeutic efficacy. Also, immuno-PET based on RIT might play an important role in cancer staging, in patients or targets selection of targeted therapeutics and in monitoring the response of targeted therapeutics as precision medicine. In this review, fundamentals of RIT/immune-PET and current knowledge of the preclinical/clinical trials in RIT for solid tumor including head and neck cancer are reviewed.