• Title/Summary/Keyword: in vitro release

Search Result 821, Processing Time 0.027 seconds

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.

Effects of Gonadotropin-Releasing Hormone on in vitro Gonadotropin Release in Testosterone-Treated Immature Rainbow Trout

  • Kim, Dae-Jung;Kim, Yi-Cheong;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • The control mechanism of gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH) release was studied using cultured pituitary cell or cultured whole pituitary obtained from Testosterone (T) treated and control immature rainbow trout. The release of FSH was not changed by salmon type GnRH (sGnRH), chiken-II type (cGnRH-II), GnRH analogue ([des-$Gly^{10}D-Ala^6$] GnRH ethylamide) and GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) in cultured pituitary cells of T-treated and control fish. Indeed, FSH release was not also altered by sGnRH in cultured whole pituitary. All tested drugs had no effect on the release of LH in both culture systems of control fish. The levels of LH, in contrast, such as the pituitary content, basal release and responsiveness to GnRH were increased by T administration in both culture systems. In addition, the release of LH in response to sGnRH or cGnRH-II induced in a dose-dependent manner from cultured pituitary cells of T-treated fish, but which is not significantly different between in both GnRH at the concentration examined. Indeed, LH release was also increased by sGnRH in cultured whole pituitary of T-treated fish. GnRH antagonist suppressed the release of LH by sGnRH ($10^{-8}\;M$) and GnRH analogue ($10^{-8}\;M$) stimulation in a dose-dependent manner from cultured pituitary cells of T-treated fish, and which were totally inhibited by $10^{-7}\;M$ GnRH antagonist. These results indicate that the sensitivity of pituitary cells to GnRH is elevated probably through the T treatment, and that GnRH is involved in the regulation of LH release. GnRH-stimulated LH release is inhibited by GnRH antagonist in a dose-dependent manner. The effects of gonadal steroids on FSH levels are less clear.

Induced Death of Escherichia coli Encapsulated in a Hollow Fiber Membrane as Observed In Vitro or After Subcutaneous Implantation

  • Granicka, L. H.;Zolnierowicz, J.;Wasilewska, D.;Werynski, A.;Kawiak, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.224-228
    • /
    • 2010
  • The encapsulation of bacteria may be used to harness them for longer periods of time in order to make them viable, whereas antibiotic treatment would result in controlled release of therapeutic molecules. Encapsulated Escherichia coli GFP (green fluorescent protein) (E. coli GFP) was used here as a model for therapeutic substance - GFP fragments release (model of bioactive substances). Our aim was to evaluate the performance of bacteria encapsulated in hollow fibers (HFs) treated with antibiotic for induction of cell death. The polypropylene-surface-modified HFs were applied for E. coli encapsulation. The encapsulated bacteria were treated with tetracycline in vitro or in vivo during subcutaneous implantation into mice. The HF content was evaluated in a flow cytometer, to assess the bacteria cell membrane permeability changes induced by tetracycline treatment. It was observed that the applied membranes prevented release of bacteria through the HF wall. The E. coli GFP culture encapsulated in HF in vitro proved the tetracycline impact on bacteria viability and allows the recognition of the sequence of events within the process of bacteria death. Treatment of the SCID mice with tetracycline for 8 h proved the tetracycline impact on bacteria viability in vivo, raising the necrotic bacteria-releasing GFP fragments. It was concluded that the bacteria may be safely enclosed within the HF at the site of implantation, and when the animal is treated with antibiotic, bacteria may act as a local source of fragments of proteins expressed in the bacteria, a hypothetical bioactive factor for the host eukaryotic organism.

A Formulation Study for the Controled Release Rate of Diltiazem. HCl using the Multiple Drug Release System (다중약물방출시스템을 이용한 염산딜티아젬의 방출속도 조절에 관한 연구)

  • Kim, Hak-Hyung;Oh, Jin-Hwan;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • The pellets with multiple drug release system (MDRS) of Diltiazem. HCl which consist of immediate drug release layer, drug reservoir layer and controlled release rate membrane, were prepared by using CF-Coater. As main factors for more effective MDRS of Diltiazem. HCl, ethylcellulose was used for the controlling drug release rate, and diethylphthalate was used for plasticizer, respectively. In vitro evaluation study was performed by comparative dissolution test between our test MDRS and reference Diltiazem. HCl preparation. The physical tests were performed using FT-IR and SEM. In vivo evaluation was also performed by observing the behavior of a plasma drug concentration after oral administration. The bioavailability was determined by analyzing the blood sample after oral administration to healthy, male volunteers once a day. As a result, there were no significant differences in bioequivalence parameters $(AUC_{\infty},\;C_{max},\;t_{1/2})$ between two systems. It might be concluded that our MDRS of Diltiazem. HCl could be an alternative delivery system to reference drug preparation.

Controlled Release of Gentamicin Sulfate from Poly(3-hydroxybu-tyrate-co-3-hydroxyvalerate) Wafers for the Treatment of Osteomyelitis

  • Gilson Khang;Park, Hak-Soo;John M. Rhee;Yoon, Sung-Chul;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.253-260
    • /
    • 2000
  • Biodegradable wafers were prepared with poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV;5, 10, and 15 mole% for 3-hydroxyvalerate) by simple heat pressing method for the sustained release of antibiotic agent, gentamicin sulfate (GS) to investigate the possibility of the treatment for osteomyelitis. The effects of hydroxyvalerate (HV) content, thickness of wafers, various types of additives such as sodium dodecyl sulfate (SDS), microcrystalline cellulose, polyvinylpyrrolidone, and hydroxypropylcellulose (HPC), and different initial drug loading ratio on the release profile have been investigated. In vitro release studies showed that different release patterns and rates could be achieved by simply modifying factors in the preparation conditions. PHBV wafers with 3 mm thickness, 10% of GS initial loading, 15% of HV content and addition of 5% of SDS and HPC were free from initial burst and a near-zero-order sustained release was observed for over 30 days. It might be suggested that the mechanisms of G5 release may be more predominant simple dissolution and diffusion of GS than erosion of PHBV in our system.

  • PDF

Ginkgetin, a plant biflavone from Ginkgo biloba leaves, inhibits release of cytokines from human PMMC

  • Kim, Hee-Kee;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.195-195
    • /
    • 1998
  • Ginkgetin was previously reported as an inhibitor of group II phospholipase A$_2$. It also inhibited in vitro arachidonate release from the activated macrophages and lymphocyte proliferation. These previous studies suggested an anti-inflammatory nature of ginkgetin, especially on chronic inflammation. In fact, ginkgetin showed potent anti-inflammatory activity against rat adjuvant-induced arthritis, a chronic inflammatory animal model, with comparable analgesic activity. In order to investigate the action mechanisms, tumor necrosis factor and interferone release were studied from human PMMC. It was found that ginkgetin clearly inhibited release of these cytoknes from human PMMC. Ginkgetin was also found to inhibit immunoglobulin M production at 1 - 10 uM. These results may contribute to antiarthritic activity of ginkgetin in vivo.

  • PDF

Hydrophilic Albumin Microspheres as Cytarabine Carriers

  • Kim, Chong-Kook;Chung, Myung-Hoa;Oh, Yu-Kyoung;Lah, Woon-Lyong
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • The surface of cyarabine-entrapped albumin microspheres, the surface modified albumin microspheres hsowed remakably incrased hydrophilicity, good dispersability in aqueous medium and reduced aggregation during storage which met the requirements of injectable drug carriers in acqueous vehicle. In vitro cytarabine release from hydrophilic albumin microspheres (HAM) was a function of the cytarabine to albumin ratio, whereas no significant difference in the releasing capacity was obnserved between surface modified HAM within the small size range$(2\;to\;5\mu{m)}$ studied. HAM containing 15-23% drug were gradually degraded by protease and continuously released up to 60% of the total entrapped cytarabine for 6h. These results thus suggest that HAM is a suitable cytarabine carrier which may be injected intraveneously with the benefits of a reduced risk of blood embolism induced by aggregates and prolonged cytarabine release.

  • PDF

Comparative Study of Spray Drying Method and Solvent Evaporation Method for Preparation of Biodegradable Microspheres Containing Nicotine and Triamcinolone Acetonide (니코틴과 트리암시놀론 아세토니드를 함유하는 생분해성 마이크로스피어의 제조시 분무건조법과 용매증발법의 비교)

  • Park, Sun-Young;Cho, Mi-Hyun;Lee, Jeong-Hwa;Kim, Dong-Woo;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.257-263
    • /
    • 2001
  • The microspheres have been developed as a new drug delivery system. Although many particulate drug carriers, such as liposome, niosome and emulsion, have been introduced, injectable and biodegradable microspheres appears to be a particularly ideal delivery system because the local anesthesia is not necessary for the insertion of large implants and for the removal of the device after the drug release is finished. Biodegradable microspheres with nicotine and triamcinolone acetonide are prepared and evaluated. As biodegradible polymers, PLA (M.W. 15,000, PLA-0015), PLGA (M.W. 17,000, RG 502) and PLGA (M.W. 8,600, RG 502H) are used. This study attempted to prepare and evaluate the nicotine and triamcinolone acetonide-incorporated microspheres, which were prepared by two methods, solvent-evaporation and spray-drying methods. The microspheres, as a disperse system for injections, were evaluated by particle size, size distribution, entrapment efficiency, and in vitro drug release patterns. The differences of preparation method, partition coefficient, types of polymer, and preparation conditions of microspheres influence the particle size, entrapment efficiency, and in vitro drug release patterns.

  • PDF

Assessment of the Dermal and Ocular Irritation Potential of Lomefloxacin by Using In Vitro Methods

  • Ahn, Jun-Ho;Eum, Ki-Hwan;Lee, Mi-Chael
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The evaluation of eye and skin irritation potential is essential to ensuring the safety of human in contact with a wide variety of substances. Despite this importance of irritation test, little is known with respect to the irritation potency of lomefloxacin, a fluoroquinolone antibiotic, which has been known to cause phototoxicity with an abnormal reaction of the skin. Thus, to investigate the tendency of lomefloxacin to cause eye and skin irritation, we carried out in vitro eye irritation test using Balb/c 3T3, and in vitro skin irritation test using $KeraSkin^{TM}$ human skin model system. 3T3 neutral red uptake assay has been proposed as a potential replacement alternative for the Draize Eye irritation test. In this study, the $IC_{50}$ value obtained for lomefloxacin was 375 ${\mu}g$. According to the classification model used for determining in vitro categories, lomefloxacin was classified as moderately irritant. For evaluation of skin irritation, engineered epidermal equivalents ($KeraSkin^{TM}$) were subjected to 10 and 25 mg of lomefloxacin for 15 minutes. Tissue damage was assessed by tissue viability evaluation, and by the release of a pro-inflammatory mediator, interleukin- 1${\alpha}$. Lomefloxacin increased the interleukin-1${\alpha}$ release after 15 minutes of exposure and 42 hours of post incubation, although no decrease in viability was observed. Therefore, lomefloxacin is considered to be moderately irritant to skin and eye.