• Title/Summary/Keyword: in vitro refolding

Search Result 19, Processing Time 0.026 seconds

Protein Aggregation and Adsorption upon In vitro Refolding of Recombinant Pseudomonas Lipase

  • Lee, Young-Phil;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.456-460
    • /
    • 1996
  • Recombinant Pseudomonas lipase was used to study protein aggregation and adsorption upon in vitro refolding. Protein adsorption as well as aggregation was responsible for major side reactions upon in vitro refolding as a function of protein concentration. The optimal range of protein concentration was determined by the relative contribution of protein aggregation and adsorption. Above the optimal range, the yield of active lipase inversely correlated with protein aggregation, showing a competition between folding and aggregation. However, adsorption of protein rather than protein aggregation is thought to contribute as a major side reaction of the refolding process at sub-optimal concentrations at which the formation of aggregates should be more reduced. Protein aggregation was influenced by the amount of guanidine hydrochloride in the refolding solvent. The refolding temperature was a critical factor determining the extent of protein aggregation. The refolding yield was also affected by the dilution fold and dilution mode, which suggests that the refolding process might kinetically compete with the rate of mixing.

  • PDF

Characterization of Protein Disulfide Isomerase during Lactoferrin Polypeptide Structural Maturation in the Endoplasmic Reticulum

  • Lee, Dong-Hee;Kang, Seung-Ha;Choi, Yun-Jaie
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • A time-dependent folding process was used to determine whether or not protein disulfide isomerase (PDI) plays an important role in the maturation of nascent lactoferrin polypeptides. Interaction between lactoferrin and PDI was analyzed according to the co-immunoprecipitation of the two proteins. The results indicate that lactoferrin folding requires a significant interaction with PDI and its binding is relatively brief compared to other nascent polypeptides. The amount of lactoferrin interacting with PDI increases up to half a minute and sharply decreases beyond this time point. During the refolding process that follows reduction by DTT, lactoferrin polypeptides heavily interact with PDI and the interaction period was extended compared to the normal folding process. In terms of the temperature effect on PDI-lactoferrin interaction, PDI binds to lactoferrin polypeptides longer at a lower temperature (here, $25^{\circ}C$) than $37^{\circ}C$. The lactoferrin-PDI interaction was also studied in vitro. According to the in vitro experiment data, PDI was still functional in cell lysates assisting lactoferrin folding into the mature form. PDI interacts with lactoferrin polypeptides for an extended period during the folding in vitro. During the refolding process in vitro, intermolecular aggregates and refolding oligomers matured into a functional form after PDI binds to the lactoferrin. These results suggest that PDI provides a prolonged chaperoning activity in the refolding processes and that there appears to be a greater requirement for PDI chaperone activity in the refolding of lactoferrin polypeptides.

  • PDF

In Vitro Formation of Active Carboxypeptidase Y from Pro-Carboxypeptidase Y Inclusion Bodies by Fed-Batch Operation

  • Hahm, Moon-Sun;Chung, Bong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.887-889
    • /
    • 2001
  • The gene encoding yeast pro-carboxypeptidase Y (pro-CPY) has been cloned and expressed in Escherichia coli. Most of the expressed pro-CPY was accumulated as cytoplasmic insoluble aggregates. In our previous study, active CPY was obtained by renaturation of entirely denatured pro-CPY followed by in vitro proteolytic processing with proteinase K along with the activation process. The same refolding process was performed to produce an active CPY from pro-CPY inclusion bodies with renaturation buffers containing proteinase K at different concentrations. The refolding efficiency decreased from $25\%\;to\;2\%$ in the renaturation buffers containing proteinase K at concentrations of $60{\mu}g/ml\;and\;0.6{\mu}g/mi$, respectively. In an attempt to increase the refolding efficiency with a lesser amount of proteinase K, a novel fed-batch refolding process was developed. In a fed-batch refolding, 99 ml of the renaturation buffer containing pro-CPY was gradually added into 1 ml of the renaturation buffer containing $60{\mu}g/ml$ of proteinase K to give a final proteinase K concentration of $0.6{\mu}g/ml$. The fed-batch refolding process resulted in a refolding efficiency of $18\%$, which corresponded to a 9-fold increase over that ($2\%$) in the batch process.

  • PDF

Heterologous Expression of Lignin Peroxidase H2 in Escherichia coli: In Vitro Refolding and Activation

  • Lee, Dong-Ho;Kim, Dong-Hyun
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.486-491
    • /
    • 1999
  • An engineered cDNA from Phanerochaete chrysosporium encoding both the mature and propeptide-sequence regions of lignin peroxidase H2 (Lip H2) was overexpressed in Escherichia coli BL21 (DE3) to evaluate its catalytic characteristics and potential application as a pollution scavenger. All expressed proteins were aggregated in an inactive inclusion body, which might be due to inherent disulfide bonds. Active enzyme was obtained by refolding with glutathione-mediated oxidation in refolding solution containing $Ca^{2+}$, heme, and urea. Propeptide-sequence region was not processed as evidenced by N-terminal sequence analysis. Recombinant Lip H2 (rLip H2) had the same physical properties of the native protein but differed in the $K_{cat}$. Catalytic efficiency ($k_{cat}/K_m$) of rLip H2 was slightly higher than that of the native enzyme. In order to express an active protein, fusion systems with thioredoxin or Dsb A, which have disulfide isomerase activity, were used. The fused proteins expressed by the Dsb A fusion vector were aggregated, whereas half of the thioredoxin fusion proteins were recovered as a soluble form but still catalytically inactive. These results suggest that Lip H2 may not be expressed as an active enzyme in Escherichia coli although the activity can be recovered by in vitro refolding.

  • PDF

The Stimulatory Effect of $Ca^{2+}and; Mg{^2}+ $ lons on the Formation of Protein Aggregate during in vitro Refolding of Tryptophan Synthase $\alpha$-Subunit (트립토판 중합효소 알파 소단위체의 in vitro 구조재형성시 $Ca^{2+}과; Mg^{2+} $ 이온의 단백질 응집체형성 촉진 효과)

  • 천광호;김종원;신혜자;임운기
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.328-332
    • /
    • 1999
  • The effect of cations on the formation of protein aggregates was examined by in vitro refolding of mutant tryptophan synthase $\alpha$-subunit in which Pro 24 was replaced by Leu. $NH^{4+},; K{^+}; and; Na^{+}$ and no effect, but $Mg^{2+}; and; Ca^{2+}$stimulated the formation of protein aggregates in dose-dependent manner. It is suggested that $Mg^{2+} and Ca^{2+}$ may be implicated in the formation of protein aggregates in vivo.

  • PDF

In-Vitro Refolding of PEGylated Lipase (PEGylation된 Lipase의 In-Vitro 재접힘)

  • Kim, Min-Young;Kwon, Jin-Sook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.338-340
    • /
    • 2005
  • Covalent modification of a protein with polyethylene glycol (PEG) has become one of the most widely used and well established drug enhancement strategies in the biopharmaceutical industry. The general benefits enjoyed by PEGylation, such as prolonged serum half-lives or reduced immunogenicity in vivo, are well known. By now the PEGylation process has been performed with purified proteins, and it is required to recover the desired PEGylate by a multi-step purification process. The ultimate aim of our research is to develop an integrated process of PEGylation and in vitro refolding starting with inclusion body material. For this, we investigated the feasibility that a protein could be PEGylated under a denaturing condition and also the PEGylated proteins could be refolded correctly. Using lipase as a model protein, we found that it was PEGylated in the presence of 8M urea and that the PEG molecules covalently attached to lipase did not appear to hinder its refolding.

Substitution of Serine for Non-disulphide-bond-forming Cysteine in Grass Carp (Ctenopharygodon Idellus) Growth Hormone Improves In Vitro Oxidative Renaturation

  • Leung, Michael Yiu-Kwong;Ho, Walter Kwok-Keung
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Native grass carp (Ctenopharygodon idellus) growth hormone, has 5 cysteine amino acid residues, forms two disulphide bridges in its mature form. Recombinant grass carp growth hormone, when over-expressed in E. coli, forms inclusion bodies. In vitro oxidative renaturation of guanidine-hydrochloride dissolved recombinant grass carp growth hormone was achieved by sequential dilution and stepwise dialysis at pH 8.5. The redox potential of the refolding cocktail was maintained by glutathione disulphide/glutathione couple. The oxidative refolded protein is heterogeneous, and contains multimers, oligomers and monomers. The presence of non-disulphide-bond-forming cysteine in recombinant grass carp growth hormone enhances intermolecular disulphide bond formation and also non-native intramolecular disulphide bond formation during protein folding. The non-disulphide-bond-forming cysteine was converted to serine by PCR-mediated site-directed mutagenesis. The resulting 4-cysteine grass carp growth hormone has improved in vitro oxidative refolding properties when studied by gel filtration and reverse phase chromatography. The refolded 4-cysteine form has less hydrophobic aggregate and has only one monomeric isoform. Both refolded 4-cysteine and 5-cystiene forms are active in radioreceptor binding assay.

Monitoring of Structural Changes during in vitro Unfolding and Refolding of Recombinant Human Growth Hormone (재조함 인성장호르몬의 in vitro 풀림과 재접힘 과정의 구조변화 모니터링)

  • Cho, Tae-Hoon;Chai, Young-Kyu;Ahn, Sang-Jeom;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.651-654
    • /
    • 1999
  • Using recombinant human growth hormone as a model protein, we carried out unfolding by adding a denaturant such as urea, guanidine HCl, or SDS followed by refolding by dilution and dialysis. The objectives were to monitor the structural changes during in vitro refolding process and, based on the results, to develop a quantitative method of refolding progress assessment. The changes in surface hydrophobicity were measured by fluorescence tagging of 1-anilinonaphthalene-8-sulfonate(1,8-ANS) to the hydrophobic portions, and those in the secondary structure were monitored by using far UV-CD(circular dichroism) spectroscopy. Also, we used RP-HPLC to separate and quantify the folded and unfolded proteins to correlate the result with the structure analysis. Our results indicate the surface hydrophobicity are well correlated with the formations of the secondary structure, primarily ${\alpha}$-helices, as well as the disulfide bridges. We expect this monitoring technique can be applied in industrial fields as a means to quantitatively assess the progress of in-vitro refolding of recombinant proteins.

  • PDF

Effect of temperature and denaturation conditions on protein folding assisted by GroEL-GroES chaperonin (GroEL-GroES 샤페로닌에 의한 단백질 접힘에 있어서 온도와 변성조건의 영향)

  • Bae, Yu-Jin;Jang, Kyoung-Jin;Jeon, Sung-Jong;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Man;Kim, Dong-Eun
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.211-217
    • /
    • 2007
  • The goal of this study is to investigate effects of temperature and co-chaperonin requirement for in vitro protein refolding assisted by E. coli chaperone GroEL under permissive and nonpermissive temperature conditions. In vitro protein refolding of two denatured proteins was kinetically investigated under several conditions in the presence of GroEL. Effects of temperature and GroES-requirement on the process of prevention of protein aggregation and refolding of denatured protein were extensively monitored. We have found that E. coli GroEL chaperone system along with ATP is required for invitro refolding of unfolded polypeptide under nonpermissive temperature of $37^{\circ}C$. However, under permissive condition spontaneous refolding can occur due to lower temperature, which can competes with chaperone-mediated protein refolding via GroEL chaperone system. Thus, GroEL seemed to divert spontaneous refolding pathway of unfolded polypeptide toward chaperone-assisted refolding pathway, which is more efficient protein refolding pathway.

In Vitro Refolding of Inclusion Body Proteins Directly from E. coli Cell Homogenate in Expanded Bed Adsorption Chromatography (Expanded Bed Adsorption 크로마토그래피를 사용하여 재조합 E. coli 세포 파쇄액으로부터 내포체 단백질을 직접 재접힘하는 공정)

  • 조태훈;서창우;이은규
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • To avoid the intrinsic problem of aggregation associated with the traditional solution-phase refolding process, we propose a solid-phase refolding method integrated with expanded bed adsorption chromatography. The model protein used was a fusion protein of recombinant human growth hormone and a glutathione S transferase fragment. It was demonstrated that the EBA-mediated refolding technique could simultaneously remove cellular debris and directly renature the fusion protein inclusion bodies in the cell homogenate with much higher yields and less agregation. To demonstrate the applicability of the method, we successfully tested the three representative types of starting materials, i. e., rhGH monomer, washed inclusion bodies, and the E. coli homogenate. This direct and simplified refolding process could also reduce the number of renaturation steps required and allow refolding at a higher concentration, at approximately 2 mg fusion protein per ml of resin. To the best of our knowledge, it is the first approach that has combined the solid-phase refolding method with expanded bed chromatography.

  • PDF