• Title/Summary/Keyword: in vitro flowering

Search Result 74, Processing Time 0.021 seconds

The Effect of Stage of Maturity on the Composition and Feeding Value of Silage (생육시기가 Silage의 사용가치에 미치는 영향)

  • 신정남;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.1
    • /
    • pp.41-60
    • /
    • 1983
  • Experiments were conducted to study the effect of stage of maturity at harvest on the quality of silage. Herbage samples taken from the barley plant, rye plant, wheat plant, oat plant, Orchardgrass, Italian ryegrass, a mixed grass sward of Orchardgrass and Italian ryegrass and corn plant at different stages of maturity and ensiled in order to evaluate the effect of maturity on the chemical composition and feeding value as well as digestibility using sheep. Forage material were ensiled in small concrete silo. 1. The dry matter yield per 10a increased with advancing the maturity. Yield of brarley plant was 404, 635 and 900 kg at heading, milk and milk dough stage, respectively. Rye plant yield was 279, 589, 708, 10,000, 1,265, 1,376 and 1,492 kg at booting, before heading, early heading, late heading, early flowering, late flowering and after flowering stage, respectively. Italian ryegrass yield was 355, 613, 844 and 1,109 kg at vegetative, booting, heading and flowering, respectively. Orchardgrass/Italian ryegrass production was 477, 696, 891 and 1,027 kg at before was 458, 1,252, 1,534, 1,986 and 2,053 kg at tassel, early milk, yellow ripe and ripe stage, respectively. 2. Dry matter content increased with advancing maturity, but crude protein declined markedly. The NFE content decreased with advancing maturity of all the herbages except corn plant where NFE content increased, but corn plant increased. The content of crude fiber increased with advancing maturity except corn plant. The content of crude ash decreased with advancing maturity. In the rye plant, the content of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose increased with advancing maturity. 3. In vitro dry matter digestibilities of the rye plant was 53.6, 54.1, 50.7, 47.1, 44.9, 40.1 and 38.9% booting, before hcading, early heading, late heading, early flowering, late flowering and after flowering stage, respectively. The regression equation was $Y=56.22-0.74X+0.009X^2$ (X=cutting date from the first cut, Y=dry matter digestibilities). 4. In vitro digestible dry matter yield (kg/10a) of rye plant increased with advancing maturity, but declined from the flowering stage. The regression equation was $Y=168.88+26.09X-0.41X^2$ (X=cutting date from the first cut). 5. In vitro digestibility of dry matter in the corn plant was 69.2, 71.5, 69.8 and 69.9% at tassel, early milk, milk and yellow ripe stage, respectively. 6. The digestibility of crude protein and crude fiber of all plants decreased with advancing matuity, but NFE of the barley and corn generally increased. 7. The TDN contents on the dry matter basis decreased, but those of barley and corn silage were not different. TDN content of barley was 57.8, 57.1 and 57.9% at heading, milk and milk dough stage, respectively. That of rye silage was 50.0, 27.2 and 43.7% at early flowering, after flowering and milk stage, respectively. Italian ryegrass silage was 67.9, 63.7, and 54.9% at before heading, early heading and after heading, respectively. In case of Orchardgrass silage the TDN was 54.8, 52.9 and 46.1% at after heading, after flowering and milk, respectively. Corn shows TDN value of 59.5, 62.8 and 61.6% at milk, yellow ripe and ripe, respectively. 8. The pH value increased slightly by advancing maturity. 9. the content of organic acid decreased by advancing maturity and also increasing the DM content.

  • PDF

Effect of Plant Growth Regulators on Flowering and Micropropagation of Gentiana scabra Bunge In Vitro. (용담의 기내 개화 및 증식에 관한 연구)

  • Son, Beung-Gu;Choi, Young-Whan;Ahn, Chong-Kil;Cho, Dong;Kwon, Oh-Chang;Park, Jung-Ki
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 1996
  • Experiments were conducted to determine the effects of plant growth regulators on in vitro flowering and micropropagation of Gentiana scabra Bunge which had been used the cut flower, pot flower ornamental and medicinal plants. Flower bud formation was affected by GA$_{3}$ and kinetin. The optimum concentrations for flower bud formation was observed at 0.5 mg/l kinetin and GA$_{3}$ , while kinetin was favorable. More flowerings result from the interaction of GA$_{3}$ and kinetin at in a combination of 0.1 mg/l kinetin + o.1 mg/l GA$_{3}$, but the optimum concentration of GA$_{3}$ and kinetin was decreased. All concentrations of kinetin with 0.1 mg/l GA$_{3}$ or O mg/l GA$_{3}$ + 0.5 mg/l kientin reduced t (weeks needed for 50% plantlets). The plantlet growth was affected by GA$_{3}$ and kinetin during plantlet culture. More lateral shots and better shoot length per plantlet were obtained as GA$_{3}$ and kinetin concentration were increased up to 1.0 mg/l. The number of per plantlet was greater increased in MS medium containing GA$_{3}$ than kinetin. Interaction was exhibited at lower concentration with 0.5mg/l GA$_{3}$ and kinetin, but not in higher concentration with 1.0 mg/l GA$_{3}$ and kinetin. Higher pod diameter increased seed germination, while lower pod diameter was obtained from abnormal plantlet. MA medium containing 0.5 mg/l GA$_{3}$ significantly increased germination without regard to pod diameter.

  • PDF

Growth and Flowering of Campanula Species as Affected by Duration, Temperature, and Light Condition during Chilling Treatment (저온처리 기간, 온도 및 광 조건이 자생초롱꽃의 생육과 개화에 미치는 영향)

  • Lee, Young Mi;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • The experiment investigated effect of duration, temperature, and light condition during chilling treatment on growth and flowering of four Campanula species in a factorial experiment. Two parent species, Campanula punctata Lam. var. rubriflora Mak. and C. Punctata Lam., and their two $F_1$ hybrids, C. punctata Lam. ${\times}$ C. punctata Lam. var. rubriflora Mak. ('Jiknyeo') and C. punctata Lam. var. rubriflora Mak. ${\times}$ C. punctata Lam. ('Gyeonu'), were used. Plants were cultured in vitro for five weeks at $25^{\circ}C$ under about $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD before being chilled at 4 or $25^{\circ}C$ for 3, 6, or 9 weeks under a darkened or lighted (about $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) condition. After chilling treatment, plants were transplanted to 10 cm pots filled with a commercial growing medium and were transferred to environment-controlled growth chambers and subsequently to a greenhouse to observe their reproductive growth. Growth of all species and flowering of a $F_1$ hybrid 'Jiknyeo' were affected by duration, temperature, and light condition during chilling treatment. The greatest growth and survival percentage were observed in C. punctata Lam. var. rubriflora Mak. The survival percentage was greater when plants were chilled in a lighted than darkened condition, whereas it decreased when plants were chilled more than six weeks in vitro. Among the four species tested, flowering was observed only in a $F_1$ hybrid 'Jiknyeo' with 62.5% flowering plants when it was chilled at $25^{\circ}C$ for three weeks under a lighted condition. Percent flowering plant was affected by duration, temperature, and light condition during chilling treatment. Three-week chilling at $4^{\circ}C$ under a darkened condition significantly reduced days to flowering. These results suggest that the low temperature requirement for flowering is not qualitative but quantitative in Campanula species. Further experiment with more number of plants is necessary to ascertain this conclusion.

Biotechnology of Reproductive Processes in Cereals

  • Barnabas, Beata
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.56-60
    • /
    • 1999
  • Sexual reproduction is an essential process in the propagation of flowering plants. Recent advances in plant cell biology and biotechnology have brought new and powerful methodologies to investigate and manipulate the reproductive processes of angiosperms including agronomically important crop plants. Successful cryopreservation of maize, rye and triticale pollen and young embryos of microspore-and zygote-origine contributes to long term preservation of important plant germ-lines in gene banks. Discovering morphogenetic characteristics of the different developmental pathways taking place in wheat and maize androgenesis in vitro helps to influence the procedure to produce genetically and phenotipically stable homozygous doubled haploid plants for breeding purposes. Detailed ultrastructural and cell-biological studies on the developmental sequences of male and female gametophyte development in wheat, experimental protocols developed to isolate and micromanipulate egg cell protoplasts, make it possible to use plant gametes and the sexual route itself to produce genetically improved organisms. Plant gametes can become useful tools for crop improvement in the near future. Recent achievements by our laboratory in this field are reviewed in the present paper

  • PDF

Effect of Plant Growth Regulators on Clonal Production through Basal Stem Explant Cultures of a Phalaenopsis Hybrid

  • Jo, Man-Hyun;Ham, In-ki;Park, Sang-kyu;Seo, Gwan-Seok;Han, Gyu-Heung;Woo, In-Shik
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • This study was conducted to develop the clonal propagation technique through in vitro culture using basal stem explants in Phalaenopsis hybrid grown in vitro. The highest frequency of protocorm-like body (PLB) formation was obtained when basal stem explants were cultured on VW medium containing 30g/L sucrose, 500 mg/L activated charcoal, 150 ml/L coconut water, 1 mg/L NAA, 5 mg/L 2iP and 2.5g/L gel rite. PLBs transferred to Hyponex medium were regenerated to plantlets. Plantlets transferred to plastic pots containing spagnum moss were developed and successfully acclimatized under greenhouse. The flower was bloomingly opened in plants regenerated from basal stem explants. The flower was not different from both mother plant and plant induced through clonal propagation of Phalaenopsis hybrid.

  • PDF

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong;Yu, Nan Hee;Yoon, Hyeokjun;Ahn, Neung-Ho;Son, Youn Kyoung;Lee, Byoung-Hee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

Measurement of Determination Time of In-Vitro Flowering in Ginseng (Panax ginseng) (인삼의 기내 개화 결정시기의 측정)

  • 이행순;이광웅;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.347-351
    • /
    • 1994
  • To measure the time required for ginseng explants to become determined to form flower buds, we cultured zygotic embryos, seedlings, and cotyledonary nodes on MS medium supplemented with BA and GA$_3$of 5 ${\mu}$M each (flower inducing medium, FIM) for various periods and transferred to the basal medium. The explants required a minimum of 10 days on FIM to be determined. Histological observations revealed that the axillary meristem to be fated to develop into flower bud remained in a state of shoot meristem during the first 10 days of culture and differentiated into flower bud after 15 days of culture. We suggest that the in-vitro flowering system described in this study is useful in investigating (a) regulatory element(s) to cause the phase change from the vegetative to reproductive state by comparing predetermined explants with determined ones at the molecular level.

  • PDF

Effects of Fungicides on Inhibition of in Vitro Strawberry Pollen Germination (In Vitro에서 살균제의 딸기 화분발아 억제 효과)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Choi, Je Hyun;Lee, He Duck
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.633-639
    • /
    • 2013
  • Fungicide applications are required to prevent the strawberry from Botrytis fruit rot and powdery mildew that infect open strawberry flowers, however, their effects of fungicides on pollen germination of strawberry have been rarely documented, particularly those from recently developed active fungicidal ingredients. In this study we have evaluated the effects of 24 commercial fungicidal formulations and 6 organic materials on pollen germination in 3 strawberry cultivars using in vitro assays. Pollens from strawberry had higher germination rates on agar with sucrose of 18% and $25^{\circ}C$ than other tested conditions. Pollen germination rates of cvs. Seolhyang, Maehyang, and Kumhyang at 18% sucrose and $25^{\circ}C$ were 15.3, 18.4 and 30.7%, respectively. Pyraclostrobin, azoxystrobin, kresoxim-methyl, dichlofluanid, iminoctadine tris, and sulfur showed the strongest inhibitory efficacy with the germination rates of more than 93.8% compared to the no-fungicide control. Germination was not significantly affected by simeconazole and procymidone. This in vitro germination study may provide information useful for selecting fungicides in flowering stage to strawberry farmers.

Studies on the Viability of Cultured Anther in Rice Anther Culture I. Changes of Respiratory Activity by Genotype and Cold-pretreatment (벼 배양약에서 약의 활력 연구 I. 품종 및 저온 전처리에 따른 호흡활성의 변화)

  • Seung Yeob, Lee;Seon Yong, Lee;Jang Soo, Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.248-253
    • /
    • 1988
  • The longer pollen stage grew to flowering stage, the higher anther respiratory rate in vivo became. and it was rapidly increased just before flowering. The anther respiratory rate in vitro showed the first and second peak points after 3-7 days and 9-1l days in culture, respectively, and fastest and highest in Daecheongbyeo with high sporophytic potentiality. It was lower in cold-pretreatment than non-treatment at the early days, but higher from 15 days after culture. The frequency of browning anthers was promoted by cold-pretreatment. The respiratory rate was not different between uncolored and browned anthers at 12 days, but it was higher in browned anthers after 24 days in culture.

  • PDF