• Title/Summary/Keyword: in vitro embryo

Search Result 1,285, Processing Time 0.02 seconds

Mouse Embryo Culture as Quality Control for Human In Vitro Fertilization (생쥐 체외수정 정도관리의 유용성에 관한 실험적 연구)

  • Lim, Young-Kyung;Park, Hyun-Jeong;Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 1991
  • The development of 2-cell mouse embryos to the blastocyst stage in vitro has been used as a quality control for the media empolyed for human in vitro fertilization. There was a comparison between the quality control data of the culture medium as ascertained by 2-cell mouse embryos development and sperm motility and the data from fertilization and cleavage of human oocytes. However, there was no obvious association between fertilization and cleavage of human oocytes and the quality of the medium ascertained by mouse embryo development and sperm motility.

  • PDF

Effects of Hormones and Glucose Levels during the In Vitro Culture in Medium on In Vitro Fertilization and Developmental Rates of Porcine Oocytes (돼지 수정란의 체외수정 및 발생에 미치는 호르몬 및 Glucose 첨가의 영향에 관한 연구)

  • 김상근;이명헌
    • Journal of Embryo Transfer
    • /
    • v.9 no.3
    • /
    • pp.235-241
    • /
    • 1994
  • The study was conducted to determine the optimal hormone and glucose levels during the in vitro culture of bovine oocytes matured and fertilized in vitro for blastocyst development. Oocytes matured in TCM 199 + 10% FCS + hormones and glucose were fertilized in vitro in a TALP medium with swim up separated and heparin-treated epididymal cauda spermatozoa. Oocytes were cultured for 2~5 days in synthetic oviduct fluid medium (SOFM) supplemented with 10% FGS and with different hormone and glucose levels, and further cultured 5 days same medium in SOFM. The results are summarized as follows : The in vitro maturation and penetration rates of porcine oocytes cultured in TCM 199 media containing PMSG, hCG, PMSG + hCG, hCG + $\beta$ estradiol, PMSG + $\beta$ estradiol 0 to20 hours after insemination were 88.0% and 81.8%, 82.6% and 68.4%, 80.0% and 75.0%, 80.0% and 65.0%, 77.3% and 64.7%, respectively. The in vitro maturation and penetration rates of porcine oocytes cultured in TCM 199 media containing PMSG, hCG, PMSG + hCG, hCG + $\beta$ estradiol, PMSG + $\beta$ estradiol 20 to 40 hours after insemination were 92.0% and 87.0%, 92.0% and 82.6%, 91.3% and 81.0%, 85.2% and 73.9%, 87.5% and 81.0%, respectively. The cleavage and in vitro developmental rates to blastocyst of porcine oocytes cultured in TCM 199 media containing 0.05 mM, 0.10 mM, 0.30 mM, 0.50 mM, 1.00 mM, and 3.00 mM glucose lelvels 0~3 days after insemination were 31.5~48.1% and 10.0~16.7%, respectively. The cleavage and in vitro developmental rates to blastocyst of porcine oocytes cultured in TCM 199 media containing 0.05 mM, 0.10 mM, 0.30 mM, 0.50 mM, 1.00 mM, and 3.00 mM glucose levels 4~8 days after insemination were 30.0~53.8% and 8.7~19.2%, respectively. The cleavage and in vitro developmental rates to blastocyst were higher in TCM 199 media containing various glucose levels 0~3 days after insemination than 4~8 days.

  • PDF

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

Effects of MMP-2 activation and FSH or LH Hormone Supplementation on Embryo Development in In Vitro Fertilization of Porcine

  • Kim, Sang Hwan;Yoon, Jong Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.313-319
    • /
    • 2018
  • The purpose of this study was to analyze whether FSH and LH hormone treatment directly or indirectly affect embryo development in embryonic development. To determine this, we compared the development of embryonic cells through the expression pattern of MMPs. As a result, 33.8% of blastocysts were formed in FSH added group, 20.8% in LH added group and 10% in FSH + LH added group. In addition, the activity of MMP-9 was highly detected in the FSH-added group, and the expression of Casp-3 was much lower than that of the other groups. These results suggest that the addition of FSH seems to increase the activity of MMP-9 in embryonic cells, and that LH, on the contrary, may activate MMP-2 activity. In addition, the expression level of MMP-2 in the FSH-added group was high in the Trophoblast cell group and in the LH-added group, the hormone ideal secretion might affect the development of the embryonic cell.

Study on Ovum-pick up for Improvement of Embryo Transfer Efficiency in Hanwoo Cows (한우의 수정란이식 효율성 향상을 위한 생체난포란 채취에 관한 연구)

  • Cho, Sang-Rae;Kang, Sung-Sik;Kim, Ui-Hyung;Lee, Suk-dong;Lee, Myoung-Sook;Yang, Byoung-Chul
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.147-151
    • /
    • 2017
  • Commercial applications of OPU/IVP were to produce embryos and calves from high genetic cows. The aim of this present study was to compare the number of recovered oocytes and cultured In vitro produced embryos from Ovum Pick-up (OPU). OPU derived embryo production was carried out of oocytes by ultrasonographic guided follicular aspiration and then produced in vitro produced blastocysts by IVP culture system. In result, the rate of recovered oocytes was obtained 612 (57.2%) and 451(73.7) G1+G2 grade oocytes. No difference of recovered rate (51.1~62.1%) was seen in six donor. The rate of cleavage and blastocyst development were obtained 320 (70.9%) and 78 (24.4%) that was $3.3{\pm}0.4$ cleaved embryo and $0.9{\pm}0.2$ blastocysts per session. Cleavage rate of OPU oocytes in No. 6 donor was 90.6%, significantly (P<0.05) higher than that in the other donors, However, blastocysts was similar (25.8~30.0%). In conclusion, limited numbers of OPU oocytes had competent development when cultured in SOF culture medium.

Temporal Aquaporin 11 Expression and Localization during Preimplantation Embryo Development

  • Park, Jae-Won;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Environmental conditions during early mammalian embryo development are critical and some adaptational phenomena are observed. However, the mechanisms underlying them remain largely masked. Previously, we reported that AQP5 expression is modified by the environmental condition without losing the developmental potency. In this study, AQP11 was examined instead. To compare expression pattern between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP11 by whole mount immunofluorescence. When the fertilized embryos were developed in the maternal tracts, the level of Aqp11 transcripts was decreased dramatically until 2-cell stage. Its level increased after 2-cell stage and peaked at 4-cell stage, but decreased again dramatically until morula stage. Its transcript level increased again at blastocyst stage. In contrast, the levels of Aqp11 transcript in embryos cultured in vitro were as follows. The patterns of expression were similar but the overall levels were low compared with those of embryos grown in the maternal tracts. AQP11 proteins were localized in submembrane cytoplasm of embryos collected from maternal reproductive tracts. The immune-reactive signals were detected in both trophectoderm and inner cell mass. However, its localization was altered in in vitro culture condition. It was localized mainly in the plasma membrane of the blastocysts contacting with external environment. The present study suggests that early stage embryo can develop successfully by themselves adapting to their environmental condition through modulation of the expression level and localization of specific genes like AQP11.

Differentiated Human Embryonic Stem Cells Enhance the In vitro and In vivo Developmental Potential of Mouse Preimplantation Embryos

  • Kim, Eun-Young;Lee, Keum-Sil;Park, Se-Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1152-1158
    • /
    • 2010
  • In differentiating human embryonic stem (d-hES) cells there are a number of types of cells which may secrete various nutrients and helpful materials for pre-implantation embryonic development. This study examined whether the d-hES could function as a feeder cell in vitro to support mouse embryonic development. By RT-PCR analysis, the d-hES cells revealed high expression of three germ-layered differentiation markers while having markedly reduced expression of stem cell markers. Also, in d-hES cells, LIF expression in embryo implantation-related material was confirmed at a similar level to undifferentiated ES cells. When mouse 2PN embryos were cultured in control M16 medium, co-culture control CR1aa medium or co-cultured with d-hES cells, their blastocyst development rate at embryonic day 4 (83.9%) were significantly better in the d-hES cell group than in the CR1aa group (66.0%), while not better than in the M16 group (90.7%)(p<0.05). However, at embryonic days 5 and 6, embryo hatching and hatched-out rates of the dhES cell group (53.6 and 48.2%, respectively) were superior to those of the M16 group (40.7 and 40.7%, respectively). At embryonic day 4, blastocysts of the d-hES cell group were transferred into pseudo-pregnant recipients, and pregnancy rate (75.0%) was very high compared to the other groups (M16, 57.1%; CR1aa, 37.5%). In addition, embryo implantation (55.9%) and live fetus rate (38.2%) of the d-hES cell group were also better than those of the other groups (M16, 36.7 and 18.3%, respectively; CR1aa, 23.2 and 8.7%, respectively). These results demonstrated that d-hES cells can be used as a feeder cell for enhancing in vitro and in vivo developmental potential of mouse pre-implantation embryos.

Stage-specific Expression of Lanosterol 14${\alpha}$-Demethylase in Mouse Oocytes in Relation to Fertilization and Embryo Development Competence

  • Song, Xiaoming;Ouyang, Hong;Tai, Ping;Chen, Xiufen;Xu, Baoshan;Yan, Jun;Xia, Guoliang;Zhang, Meijia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2009
  • Follicular fluid meiosis-activating sterol (FF-MAS) has been suggested as a positive factor which could improve the oocyte quality and subsequent embryo development after in vitro fertilization. However, FF-MAS is a highly lipophilic substance and is hard to detect in studying the relationship between MAS and quality of oocyte maturation. The present study focused on the expression of lanosterol 14${\alpha}$-demethylase (LDM), a key enzyme that converts lanosterol to FF-MAS, on mouse oocyte maturation and its potency on development. LDM expression was strong in gonadotropin-primed germinal vesicle stage oocytes, weak after germinal vesicle breakdown (GVBD), and then strong in MII stage oocytes. The LDM-specific inhibitor azalanstat significantly inhibited oocyte fertilization (from 79.4% to 68.3%, p<0.05). Also, azalanstat (5 to 50 ${\mu}M$) decreased the percentage of blastocyst development dosedependently (from 78.7% to 23.4%, p<0.05). The specific inhibition of sterol ${\Delta}14$-reductase and ${\Delta}7$-reductase by AY9944 accumulates FF-MAS and could increase blastocyst development rates. Additionally, in the AY9944 group, the rate of inner cell mass (ICM)/ total cells was similar to that of in vivo development, but the rate was significantly decreased in azalanstat treatment. In conclusion, LDM, the key enzyme of FF-MAS production, may play an important role in fertilization and early development of the mouse embryo, especially in vitro.

Existence of Amino Acids in Defined Culture Medium Influences In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos

  • Won, Cheol-Hee;Park, Sang-Kyu;Kim, Ki-Young;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2008
  • This study was designed to investigate the effect of essential amino acids (EAA) and/or non-essential amino acids (NEAA) on the development of parthenogenetic and somatic cell nuclear transfer (SCNT) porcine embryos in vitro. To evaluate the timing of amino acids supplementation, activated oocytes were cultured in NCSU23-PVA with EAA, NEAA or NEAA+EAA (AAs) during specific periods as below: EAA, NEAA or AAs were supplemented during Day 0 to 6 (whole culture period: ALL), Day 2 to Day 6 (post-maternal embryonic transition period: POST-MET), Day 5 to Day 6 (post-compaction period: POST-CMP), Day 0 to Day 2 (pre-maternal embryonic transition period: PRE-MET), or Day 0 to Day 4 (post-compaction period: PRE-CMP). Supplementation of NEAA decreased cleavage rates in PRE-MET and PRE-CMP and also decreased blastocyst rates in POST-CMP. On the other hand, EAA significantly enhanced blastocyst formation rate in POST-MET and no detrimental effect on embryonic development in other groups. Interestingly, NEAA and EAA had synergistic effect when they were supplemented to the medium during whole culture period. Supplementation of AAs also enhanced SCNT porcine embryo development whereas BSA-free medium without AAs could not supported blastocyst formation of SCNT embryos. In conclusion, existence of EAA and NEAA in defined culture medium variously influences the development of parthenogenetic and SCNT porcine embryos, and their positive effect are only occurred when both EAA and NEAA are supplemented to the medium during whole culture period. Additionally, AAs supplementation enhances the blastocyst formation of SCNT porcine embryos when they are cultured in the defined condition.