• Title/Summary/Keyword: in vitro Chromosome Aberration

Search Result 85, Processing Time 0.021 seconds

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Nohmi, Takehiko
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.281-290
    • /
    • 2018
  • Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Genotoxicity of Taxol and 10-Deacetyl Baccatin III Using Single Cell Gel Electrophoresis (Comet Assay) in Chinese Hamster Lung Fibroblast

  • Kim, Hyun-Joo;Kim, Kyung-Ran;Youn, Ji-Youn;Kim, Min-Hee;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.61-61
    • /
    • 1996
  • Taxol is used as cancer therapeutic agent. It has been known as weak posotive of chromosome aberration assay in vitro in our previous results (Ryu et al., 1996) and potent clastogens in the mouse bone marrow micronucleus (Tinwell and Ashby, 1994). We performed microgel electrophoresis to determine the effect of taxol and it's precursor 10-deacetyl baccatin III(DAB) on DNA. Microgel electrophoresis is useful, rapid, simple, visual, and sensitive technique for measuring DNA breakage and repair mechanisms in mammalian 근ells. The range of concentration used for taxol were 854, 427, 213.5, 106.8, 53.4 Ug/ml, for DAB 910 ,455, 227.5 U9/ml, Cell viability always exceed 85%. We analyzed the results by using the special software of image analyzer for this comet assay (Komet 3.0). By using this image analyzer software , we can get the result as the tail moment ((mean of tail length - mean of head lengh) x tail%DNA/100). A slight increase in DNA migration was observed for taxol at the concentration of 854 Ug/m4 in the absence of S9 mixture. No increased DNA migration was observed after treatment with DAB.

  • PDF

Radiation-Induced Chromosome Aberration in Human Peripheral Blood Lymphocytes In Vitro : RBE Study with Neutrons and $^{60}Co\;{\gamma}-rays$. (KCCH cyclotron neutron 및 $^{60}Co\;{\gamma}-ray$에 의한 인체 말초혈액 임파구의 염색체 이상측정)

  • Kim, Sung-Ho;Kim, Tae-Hwan;Chung, In-Yong;Cho, Chul-Koo;Koh, Kyoung-Hwan;Yoo, Seong-Yul
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 1992
  • The frequencies of KCCH cyclotron neutron (30 cGy/min) or $^{60}Co\;{\gamma}-rays$ (210 cGy/min)-induced asymmetrical interchanges (dicentrics and centric rings) and acentric fragments (deletion) at several doses were measured in the normal human peripheral blood lymphocytes Chromosome aberrations were scored at the first nitosis after stimulation with phytohemagglutinin. The neutron and y-ray data were analysed on linear, power-law, quadratic and linear-quadratic model . When the dicentrics and centric rings of ${\gamma}-rays$ datas were pooled and fitted to these model, good fits were obtained to power-law $[Y=(5.81{\pm}1.96){\times}10^6D^{1.93+0.06},\; P=0.931]$, quadratic $[Y=(3.91{\pm}0.09){\times}10^{-6}D^2,\;P=0.972]$ an linear-Quadrati model $[Y=(6.55{\pm}6.83){\times}10^{-5}D+(3.72{\pm}0.22){\times}10^{-6}D^2\; P=0.922]$, except for linear model (P=0.067) As in the case of neutron data, the best fit was obtained to the linear model $(Y=(6.12{\pm}0.17){\times}10^{-3}\;D-0.22,\;P=0.987]$ and good fits were obtained to power-law$[Y=(5.36{\pm}3.02) {\times}10^{-4}D^{1.42+0.11},\; P=0.601]$ and linear-quadratic model$[Y=(2.43{\pm}0.70){\times}10^{-3}D+(1.21{\pm}0.39){\times}10^{-7}D^2$, \;P=0.415], except for quadratic model (P<0.005). The relative biological effectiveness (RBE) of neutron compared with y-ray was estimated by best fitting model. In the asymmetrical interchanges range between 0.1 and 1.5 per cell, the RBE was found to be $2.714{\pm}0.408$.

  • PDF

Chromosomal Aberrations Induced in Human Lymphocytes by in vitro Irradiation with $^{60}Co\;{\gamma}-rays$ (체외 방사선조사시 인체 말초혈액 임파구의 염색체이상 빈도에 관한 연구)

  • Ahn, Yong-Chan;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • As guides to decision-making in the management of the victims in case of acute whole body or partial body radiation exposure, we studied the relationship between radiation dose and the frequency of chromosomal aberrations observed in peripheral lymphocytes that were irradiated in vitro with $^{60}Co\;{\gamma}-rays$ at doses ranging from 2Gy to 12Gy. The yields of cells with unstable chromosomal aberrations (dicentric chromosomes, ring chromosomes, and acentric fragment pairs) were 32% at 2Gy, 47% at 4Gy, 80% at 6Gy, 94% at 8Gy, and 100% at 10Gy and over. Ydr, which reflect average dose to the whole body in case of acute whole body exposure, were 1.373 at 2Gy, 0.669 at 4Gy, 1.734 at 6Gy, 2.773 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. The relationship between radiation dose (D) and the frequency of dicentric plus ring chromosomes per cell(Ydr) could be expressed as $Ydr=9.322{\times}10^{-2}/Gy {\times}D+2.975{\times}10^{-2}/Gy^2{\times}D^2$. Qdr, which are used in estimating dose of partial body exposure and dose of past exposure, were 1.166 at 2Gy, 1.436 at 4Gy, 2.173 at 6Gy, 2.945 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. To see how confidently this dosimetry system may be used, we obtained Qdr values from those who received one fraction of homogenous partial body irradiation of 1.BGy, 2.5Gy, and 7.OGy therapeutically; in vivo Qdr values were 1.109, 1.222 and 2.222 respectively. The estimated doses calculated from these in vivo Qdr values using the equation $Qdr=Ydr/(1- e^{-Ydr})$ were 1.52Gy, 2.48Gy, and 6.54Gy respectively, which were very close to the doses actually given.

  • PDF

The Frequency of Chromosomal Aberrations of Peripheral Lymphocytes according to Radiation Dose and Dose Rate (선량 및 선량률 변화에 따른 말초혈액 임파구의 염색체 이상의 빈도)

  • Jeong Tae Sik;Baek Heum Man;Shin Byung Chul;Moon Chang Woo;Kim Mi Hyang;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Purpose : It was studied that the relationship between radiation dose, dose rate and the frequency of chromosomal aberrations in peripheral lymphocytes. Methods and Materials : Peripheral lymphocytes were irradiated in vitro with 6 MeV X-ray at dose ranges from 50 cGy to 800 cGy. The variations of the frequency of chromosomal aberrations were observed according to different radiation dose rate from 20 cGy/min to 400 cGy/min at constant total dose of 400 cGy which it was considered as factor to correct biological radiation dose measurement. Results : The yields of lymphocytes with chromosomal aberrations (dicentric chromosome, ring chromosome, acentric fragment pairs) are 0% at 50 cGy, 9% at 100 cGy, 20% at 200 cGy, 27% at 300 cGy, 55% at 400 cGy, 88% at 600 cGy, and 100% at 800 cGy. The value of Ydr is 0.000 at 50 cGy, 0.093 at 100 cGy, 0.200 at 200 cGy, 0.354 at 300 cGy, 0.612 at 400 cGy, 2.040 at 600 cGy, and 2.846 at 800 cGy. The relationship between radiation (D) and the frequency of dicentrlc chromosomes and ring Chromosomes (Ydr) can be expressed as Ydr=0.188${\times}$10$^{-2}$ D/Gy+0.422${\times}$10$^{-4}$/Gy$^{2}$${\times}$D$^{2}$ The Value of Qdr is 0.000 at 50 cGy, 1.000 at 100 cGy, 1.000 at 200 cGy, 1.333 at 300 cGy, 1.118 at 400 cGy, 2.318 at 600 cGy, and 2.846 at 800 cGy. When 400 cGy is irradiated with different dose rate each of 20, 40, 60, 80, 100, 160, 240, 320, and 400 cGy/min, Ydr is each of 0.982, 0.837, 0.860, 0.732, 0.763, 0.966, 0.909, 1.006, and 0.806, and Qdr is each of 1.839, 1.555, 1.654, 1.333, 1.381, 1.750, 1.6000, 1.710, and 1.318. Conclusion : There are not the significant variations of Ydr and Qdr values according to different dose rate. And so radiation damage is influenced by total exposed radiation doses and is influenced least of all by different dose rate when it is acute single exposure.

  • PDF