• Title/Summary/Keyword: in plane performance

Search Result 1,234, Processing Time 0.028 seconds

Discrete-Time Queuing Analysis of Dual-Plane ATM Switch with Synchronous Connection Control

  • Choi, Jun-Kyun
    • ETRI Journal
    • /
    • v.19 no.4
    • /
    • pp.326-343
    • /
    • 1997
  • In this paper, we propose an ATM switch with the rate more than gigabits per second to cope with future broadband service environments. The basic idea is to separate the connection control flow from the data information flow inside the switch. The proposed switch has a dual-plane switch matrix with the synchronous control algorithm. The queuing behaviors of the proposed switch are shown by the discrete-time queuing analysis. Numerical analyses are taken both in the non-blocking crossbar switch and the banyan switch with internal blocking. Results show that a proposed dual-plane $16{\times}16$ switch would have the acceptable performance with maximum throughput of about 95 percent.

  • PDF

A Study on the Improvement of the IM Speed Control Characteristics with Load Torque Variation (부하 변동에 대한 유도 전동기의 속도 제어 특성에 관한 연구)

  • 강문호;김남정;유기윤;박귀태;민경일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1075-1083
    • /
    • 1994
  • In this paper, a study on the improvement of the IM speed response against load torque variation is presented. A VSCS(Variable Structure Control System) is proposed which gives the desired robustness against load torque variation using a new kind of time-varing switching plane. In order to eliminate the reaching phase of the states from one switching plane to another during variation, the switching plane is varied continuously. To verify the high dynamic performance of the proposed VSCS, simulation and experimental results are presented.

Seismic performance of L-shaped RC walls sustaining Unsymmetrical bending

  • Zhang, Zhongwen;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.269-280
    • /
    • 2021
  • Reinforced concrete (RC) structural walls with L-shaped sections are commonly used in RC buildings. The walls are often expected to sustain biaxial load and Unsymmetrical bending in an earthquake event. However, there currently exists limited experimental evidence regarding their seismic behaviour in these lateral loading directions. This paper makes experimental and numerical investigations to these walls behaviours. Experimental evidences are presented for four L-shaped wall specimens which were tested under simulated seismic load from different lateral directions. The results highlighted some distinct behaviour of L-shaped walls sustaining Unsymmetrical bending relating to their seismic performance. First, due to the Unsymmetrical bending, out-of-plane reaction forces occur for these walls, which contribute to accumulation of the out-of-plane deformations of the wall, especially when out-of-plane stiffness of the section is reduced by horizontal cracks in the cyclic load. Secondly, cracking was found to affect shear centre of the specimens loaded in the Unsymmetrical bending direction. The shear centre of these specimens distinctly differs in the flange in the positive and negative loading direction. Cracking of the flange also causes significant warping in the bottom part of the wall, which eventually lead to out-of-plane buckling failure.

Performance Comparison of Steel Rod and Steel Plate Dampers with the Same Damper Height (댐퍼 높이가 같은 강봉 및 강판 댐퍼의 성능 비교)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • In this study, based on the research results of the steel plate and steel rod dampers with rocking behavior, the moment and the drift ratio were compared and evaluated. As a test result evaluation, it was showed that the behavior of R15-200 and R15-140 was very good than other dampers. And the steel rod damper showed in-plane behavior to the loading direction, and was evaluated to prevent out-of-plane behavior that causes performance degradation.

Recent Progress of Nonpolar and Semipolar GaN on Sapphire Substrates for the Next Generation High Power Light Emitting Diodes

  • Lee, Seong-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • III-nitrides have attracted much attention for optoelectronic device applications whose emission wavelengths ranging from green to ultraviolet due to their wide band gap. However, due to the strong polarization properties of conventional c-plane III-nitrides, the built-in polarization-induced electric field limits the performance of optical devices. Therefore, there has been a renewed interest in the growth of nonpolar III-nitride semiconductors for polarization free heterostructure optoelectronic and electronic devices. However, the crystal and the optical quality of nonpolar/semipolar GaN have been poorer than those of conventional c-plane GaN, resulting in the relative poor optical and electrical properties of light emitting diodes (LEDs). In this presentation, I will discuss the growth and characterization of high quality nonpolar a-plane and semipolar (11-22) GaN and InGaN multiple quantum wells (MQWs) grown on r- and m-plane sapphire substrates, respectively, by using metalorganic chemical vapor deposition (MOCVD) without a low temperature GaN buffer layer. Especially, the epitaxial lateral overgrowth (ELO) technique will be also discussed to reduce the dislocation density and enhance the performance of nonpolar and semipolar GaN-based LEDs.

  • PDF

Fuzzy proportional -derivative controller with adaptive control resolution

  • Oh, Seok-Yong;Park, Dong-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.135-137
    • /
    • 1995
  • A new design method is proposed for a fuzzy PD controller. By analyzing phase plane characteristics we can build and optimize the rule base of fuzzy logic controller. Also, a new gain tuning method is used to improve performance in the transient and steady state. The improved performance of the new methodology is shown by an application to the design of control system with a highly nonlinear actuator.

  • PDF

Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal

  • Kim, Ill-Yong;Kikuta, Koichi;Ohtsuki, Chikara
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.397-402
    • /
    • 2012
  • Morphological control on hydroxyapatite crystals has attractive prospects in research to clarify the effects of crystal planes on biological performance. Hydrothermal processing is known as a typical type of processing for fabricating well-grown crystals with unique morphology. The purpose of the present study is to examine the feasibility of well-crystallized crystals with oriented structures through hydrothermal treatment of calcite. A single crystal of calcite was applied to hydrothermal treatment in a phosphate solution at $160^{\circ}C$. Rod-shaped hydroxyapatite crystals with micrometer-size were formed on the {100} face of calcite after treatment, while nanometer-sized hydroxyapatite crystals were formed on the (111). The hydroxyapatite crystals formed on each plane were not morphologically changed with increasing treatment periods. An oriented structure of rod-shaped hydroxyapatite was constructed after hydrothermal treatment of {100} planes on the calcite single, while such orientation was not observed on the (111) plane after the treatment. The layer of hydroxyapatite formed on the {100} plane was thicker than that of the (111) plane. The {100} plane of calcite shows a higher reactivity than that of the (111) plane, which results in rapid crystal growth of hydroxyapatite. The difference in the morphology of the formed hydroxyapatite was governed by the reactivity of each crystal plane exposed to the surrounding solution.

Millimeter-wave waveguide transducer using extended E-plane probe (연장된 E-plane 프로브를 이용한 밀리미터파 도파관 변환기)

  • Park, Woojin;Choe, Wonseok;Lee, Kookjoo;Kwon, Junbeom;Jeong, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, a low-loss wideband waveguide transducer is proposed for millimeter-wave communication and radar applications. A conventional E-plane probe transducer is generally designed using thin and flexible substrate at millimeter-wave frequencies, considering the very small waveguide size. However, it results in serious performance degradation caused by the bending of the substrate. In order to alleviate this problem and provide a reliable performance, we propose an extended E-plane probe transducer where the probe substrate is extended to and fix ed in the slit area formed in the waveguide wall. It is fabricated using $127{\mu}m$-thick substrate with dielectric constant of 2.2. The measurement in the back-to-hack configuration shows the excellent insertion loss of 1.35 dB (${\pm}0.35dB$) including the loss of 3 cm-long thru waveguide and return loss better than 13.8 dB over entire W-band (75-110 GHz). Therefore, it can be effectively applied for millimeter-wave high-speed communications and high-sensitivity radars.

A study on out-of-plane strengthening of masonry-infilled wall (조적채움벽의 면외보강에 관한 연구)

  • Jang, Hye-Sook;Eun, Hee-Chang
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.

A Study on the Load Carrying Capacity and Equivalence Friction Coefficient of a Textured Plane Bearing with Semi-spherical Dimples and Semi-ellipsoidal Dimples (반구형 및 반타원형으로 텍스처링된 평면 베어링의 부하지지능력과 등가마찰계수에 대한 해석)

  • Lee, Soo-Young;Kim, Pil-Kee;Seok, Jong-Hyuk;Seok, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.741-746
    • /
    • 2012
  • The increase of energetic efficiency in plane bearing is getting more important in the transfer mechanism of semi-conductor and display panel manufacturing processes. To accomplish this objective, the technique of surface texturing on bearing surface has recently emerged as one of the most effective candidates. In this study, the effects of various pattern parameters on two bearing performance indices(load carrying capacity and effective friction coefficient) are investigated through a semi-analytic method, i.e., the 2-dimensional Reynolds equation incorporated into the finite difference scheme. Here, cavitation effect is also taken into account by employing an appropriate numerical scheme. In this study, the patterns in the textured surface are composed of a series of semi-spheres or semi-ellipsoids in shape. The effects of their size and number density on the performance indices are examined through the performance of various numerical experiments. Also, the effects of the anisotropy of the semi-ellipsoidal pattern on the bearing's lubrication characteristics are investigated and discussed.