• Title/Summary/Keyword: in Vivo Diode Dosimetry

Search Result 11, Processing Time 0.027 seconds

Measurement of Rectal Rodiation dose in the Patients with Uterine Cervix fencer using In Vivo Dosimetry(Diode Detector) (자궁경부암 환자에서 In vivo dosimetry(Diode detector)를 이용할 직장선량의 측정)

  • Kim, Sung-Kee;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Purpose : A rectum and a bladder should be carefully considered in order to decrease side effects when HDR patient of uterine cervix cancer. Generally speaking, the value of dosimeter at a rectum and a bladder only depends on the value of a planning equipment, while some analyses of the value of dosimetry at rectum with TLD has been reported Or the contrary, it is hardly to find a report with in vivo dosimetry(diode detector). On this thesis, we would like to suggest the following. When a patient of uterine cervix cancer is in therapy, it is helpful to put a diode detector inside of a rectum in order to measure the rectal dose Based upon the result of the dosimetry, the result can be used as basic data at decreasing side effects. Materials and Methods : Six patients of uterine cervix cancer(four with tandem and ovoid, one with cylinder, and the other one with tandem and cylinder) who had been irradiated with HDR. Ir-192 totally 28 times from February 2003 to June 2003. We irradiated twice in the same distant spots with anterior film and lateral film whenever we measured with a diode detector. Then we did planning and compared each film. Results : The result of the measurement 4 patients with a diode detector is the following. The average and deviation from 3 patients with tandem and ovoid were $274.1{\pm}13.4cGy$, from 1 patient with tandem and ovoid were $126.1{\pm}7.2cGy$, from 1 patient with cylinder were $99.7{\pm}7.1cGy$, and from 1 patient with tandem and cylinder were $77.7{\pm}11.5cGy$. Conclusion : It is difficult to predict how the side effect of a rectum since the result of measurement with a diode detector depends on the state of a rectum. According to the result of the study, it is effective to use a TLD or an in vivo dosimetry and measure a rectum in order to consider the side effect. It is very necessary to decrease the amount of irradiation by controlling properly the duration of the irradiation and gauze packing, and by using shield equipments especially when side effects can be expected.

  • PDF

Total Body Irradiation Technique : Basic Data Measurements and In Vivo Dosimetry (방사선 전신 조사 : 기본 자료 측정 및 생체내에서 선량 측정)

  • Choi Dong-Rak;Choi Ihl Bohng;Kang Ki Mun;Shinn Kyung Sub;Kim Choon Choo
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.219-223
    • /
    • 1994
  • This paper describes the basic data measurements for total body irradiation with 6 Mv photon beam including compensators design. The technique uses bilateral opposing fields with tissue compensators for the head, neck, lungs, and legs from the hip to toes. In vivo dosimetry was carried out for determining absorbed dose at various regions in 7 patients using diode detectors(MULTIDOSE,k Model 9310, MULTIDATA Co., USA). As a results, the dose uniformity of${\pm}3.5{\%}$(generally, within${\pm}10{\%}$can be achieved with out total body irradiation technique.

  • PDF

In-vivo Dose verification using MOSFET dosimeter (MOSFET 선량계를 이용한 In-vivo 선량의 확인)

  • Kang, Dae-Gyu;Lee, Kwang-Man
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.102-105
    • /
    • 2006
  • In-vivo dosimetry is an essential tool of quality assurance programs in radiotherapy. The most commonly used techniques to verify dose are thermoluminescence dosimeter (TLD) and diode detectors. Metal oxide semiconductor field-effect transistor (MOSFET) has been recently proposed for using in radiation therapy with many advantages. The reproducibility, linearity, isotropy, dose rate dependence of the MOSFET dosimeter were studied and its availability was verified. Consequently the results can be used to improve therapeutic planning procedure and minimize treatment errors in radiotherapy.

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.

In Vivo Dosimetry with MOSFET Detector during Radiotherapy (방사선 치료 중 MOSFET 검출기를 이용한 체표면 선량측정법)

  • Kim Won-Taek;Ki Yong-Gan;Kwon Soo-Il;Lim Sang-Wook;Huh Hyun-Do;Lee Suk;Kwon Byung-Hyun;Kim Dong-Won;Cho Sam-Ju
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • In Vivo dosimetry is a method to evaluate the radiotherapy; it is used to find the dosimetric and mechanical errors of radiotherapy unit. In this study, on-line In Vivo dosimetry was enabled by measuring the skin dose with MOSFET detectors attached to patient's skin during treatment. MOSFET dosimeters were found to be reproducible and independent on beam directions. MOSFET detectors were positioned on patient's skin underneath of the dose build-up material which was used to minimize dosimetric error. Delivered dose calculated by the plan verification function embedded in the radiotherapy treatment planning system (RTPs), was compared with measured data point by point. The dependency of MOSFET detector used in this study for energy and dose rate agrees with the specification provided by manufacturer within 2% error. Comparing the measured and the calculated point doses of each patient, discrepancy was within 5%. It was enabled to verify the IMRT by using MOSFET detector. However, skin dosimetry using conventional ion chamber and diode detector is limited to the simple radiotherapy.

  • PDF

Evaluation of Usefulness on In-vivo Diode Dosimetry for Measuring the Tumor Dose of Oral Cancer Patient (구강암 환자의 종양 선량 측정을 위한 In-vivo Diode Dosimetry의 유용성 평가)

  • Na Kyung-Su;Lee Je-Hee;Park Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • Purpose : This test is designed to identify the validity of treatment plan by implementing real-time dosimetry by means of dose that is absorbed into PTV and OAR when preparing doses of 3D and POP plans. Materials and Methods : In treatment. error can be calculated be comparing Exp. Dose with the actual dose, which has been converted from 'the reading value obtained by placing diode detector on the area to be measured'. Same test can be repeated using Alderson-Rando phantom. Results : Errors were found: A patient(POP plan): 197.6/199=-1.2%, B patient(3D-plan): 199.9/198.7=+0.6%, C patient: 196/200=-1.5%. In addition, considering the resulted value of measuring OAR besides target-dose for C patient showed 96/200, representing does of 47%, the purpose of protection was judged to be duly accomplished. Also it was acknowledged the resulted value of -3.7% met the targeted dose within the range of ${\pm}5%$. Conclusion : Aimed for identifying the usefulness of pre-treatment dose measurement using diode detector, this test was useful to evaluate the validity of curing because it resulted in the identification of category to be protected as well as t dose. Moreover, it is thought to have great advantage in ascertaining the dose of target, dose of which is not calculated yet. Similar to L-gram before treatment, this test is thought to be very effective so that it can bring great advantages in the aspects such as validity of curing method and post-treatment plan as well.

  • PDF

Measurement of Skin Dose for Rectal Cancer Patients in Radiotherapy using Optically Stimulated Luminescence Detectors (OSLDs) (광자극발광선량계(OLSDs)를 이용한 직장암 방사선치료 환자의 피부선량 측정)

  • Im, In-Chul;Yu, Yun-Sik;Lee, Jae-Seung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • This study used the optically stimulated luminescence dosimeters (OSLDs), recently, received the revaluation of usefulness in vivo dosimetry, and the diode detecters to measure the skin dose of patient with the rectal cancer. The measurements of dose delivered were compared with the planned dose from the treatment planning system (TPS). We evaluated the clinical application of OSDs in radiotherapy. We measured the calibration factor of OSLDs and used the percent depth dose to verified, also, we created the three point of surface by ten patients of rectal cancer to measured. The calibration factors of OSLD was 1.17 for 6 MV X-ray and 1.28 for 10 MV X-ray, demonstrating the energy dependency of X-ray beams. Comparison of surface dose measurement using the OSLDs and diode detectors with the planned dose from the TPS, The skin dose of patient was increased 1.16 ~ 2.83% for diode detectors, 1.36 ~ 2.17% for OSLDs. Especially, the difference between planned dose and the delivery dose was increased in the perineum, a skin of intense flexure region, and the OSLDs as a result of close spacing of measuring a variate showed a steady dose verification than the diode detecters. Therefore, on behalf of the ionization chamber and diode detecters, OSLDs could be applied clinically in the verification of radiation dose error and in vivo dosimety. The research on the dose verification of the rectal cancer in the around perineal, a surface of intense flexure region, suggest continue to be.

Interstitial Photodynamic Therapy (PDT) Set-up for Treating Solid Tumor Using Laser Diode (레이저 다이오드를 이용한 고형암 치료를 위한 간질성 광역학 치료법 개발)

  • Kim Jong-Ki;Kim Ki-Hong
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2005
  • Photodynamic therapy (PDT) is one of the expectable current cure operation methods. Tumor tissue is treated by abundant oxygen in a body and generated singlet or free radical from exterior laser diode and photosensitizer. Current problem of PDT is the low penetration power of the light beam in a deep seated large tumor and solid tumor thus results in low treatment outcome. In the study, we tried to develop interstitial photodynamics therapy treatment to solve this problem. As the accurate determination of light dosimetry in biological tissue is one of the most important factors affecting the effectiveness of PDT, parameters used in this study are the optical property of biological tissue. Since biological tissues have large scattering coefficient to visible light the penetration depth of a biological tissue in visible light region is only $15\~20$ mm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well. Based on the MC simulation study, the effectiveness of interstitial photodynamic therapy on tumor control in solid tumor was proved through in vivo animal experiment.

  • PDF