• Title/Summary/Keyword: improving accuracy

Search Result 1,558, Processing Time 0.027 seconds

A study on the estimation of onion's bulb weight using multi-level model (다층모형을 활용한 양파 구중 추정 연구)

  • Kim, Junki;Choi, Seung-cheon;Kim, Jaehwi;Seo, Hong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.763-776
    • /
    • 2020
  • Onions show severe volatility in production and price because crop conditions highly depend on the weather. The government has designated onions as a sensitive agricultural product, and prepared various measures to stabilize the supply and demand. First of all, preemptive and reliable information on predicting onion production is essential to implement appropriate and effective measures. This study aims to contribute to improving the accuracy of production forecasting by developing a model to estimate the final weight of onions bulb. For the analysis, multi-level model is used to reflect the hierarchical data characteristics consisting of above-ground growth data in individual units and meteorological data in parcel units. The result shows that as the number of leaf, stem diameter, and plant height in early May increase, the bulb weight increases. The amount of precipitation as well as the number of days beyond a certain temperature inhibiting carbon assimilation have negative effects on bulb weight, However, the daily range of temperature and more precipitation near the harvest season are statistically significant as positive effects. Also, it is confirmed that the fitness and explanatory power of the model is improved by considering the interaction terms between level-1 and level-2 variables.

A Study on Lightweight CNN-based Interpolation Method for Satellite Images (위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

Regression model for the preparation of calibration curve in the quantitative LC-MS/MS analysis of urinary methamphetamine, amphetamine and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid using R (소변 중 메트암페타민, 암페타민 및 대마 대사체 LC-MS/MS 정량분석에서 검량선 작성을 위한 R을 활용한 회귀모델 선택)

  • Kim, Jin Young;Shin, Dong Won
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.241-250
    • /
    • 2021
  • Calibration curves are essential in quantitative methods and for improving the accuracy of analyte measurements in biological samples. In this study, a statistical analysis model built in the R language (The R Foundation for Statistical Computing) was used to identify a set of weighting factors and regression models based on a stepwise selection criteria. An LC-MS/MS method was used to detect the presence of urinary methamphetamine, amphetamine, and 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol in a sample set. Weighting factors for the calibration curves were derived by calculating the heteroscedasticity of the measurements, where the presence of heteroscedasticity was determined via variance tests. The optimal regression model and weighting factor were chosen according to the sum of the absolute percentage relative error. Subsequently, the order of the regression model was calculated using a partial variance test. The proposed statistical analysis tool facilitated selection of the optimal calibration model and detection of methamphetamine, amphetamine, and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in urine. Thus, this study for the selection of weighting and the use of a complex regression equation may provide insights for linear and quadratic regressions in analytical and bioanalytical measurements.

State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm (하모니 탐색 알고리즘의 선도 연구에 관한 최첨단 기술 동향과 사례 분석)

  • Kim, Eun-Sung;Shin, Seung-Soo;Kim, Yong-Hyuk;Yoon, Yourim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.81-90
    • /
    • 2021
  • There are various optimization problems in real world and research continues to solve them. An optimization problem is the problem of finding a combination of parameters that maximizes or minimizes the objective function. Harmony search is a population-based metaheuristic algorithm for solving optimization problems and it is designed to mimic the improvisation of jazz music. Harmony search has been actively applied to optimization problems in various fields such as civil engineering, computer science, energy, medical science, and water quality engineering. Harmony search has a simple working principle and it has the advantage of finding good solutions quickly in constrained optimization problems. Especially there are various application cases showing high accuracy with a low number of iterations by improving the solution through the empirical derivative. In this paper, we explain working principle of Harmony search and classify the leading research in recent 3 years, review them according to category, and suggest future research directions. The research is divided into review by field, algorithmic analysis and theory, and application to real world problems. Application to real world problems is classified according to the purpose of optimization and whether or not they are hybridized with other metaheuristic algorithms.

Alcohol content analysis for Takju, a representative traditional liquor in Korea (대한민국 대표 전통주 탁주의 알코올 도수 분석)

  • Oh, Chang-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.631-636
    • /
    • 2022
  • Alcohol content, which is an important standard for Takju, a traditional multiple parallel fermentation liquor called makgeolli, is a factor that can affect the flavor. For alcohol content analysis, the distillation/hydrometry technique is mainly used. In this study, we analyzed the alcohol content of 14 commercially available Takju by the distillation/hydrometry technique and the improved GC method, respectively, after verifying the reliability of improved GC method. The precision and accuracy of the GC method were satisfactory, and LOQ and LOD were evaluated as 0.5% and 0.1% of ethanol contents, respectively. Among the three Takju exceeding the labelled alcohol content ±1, one Takju was quantitated as alcohol content 9.9% (by GC method) and 10.1% (distillation/hydrometry technique) exceeding labelled 6.0%. It was within the analytical error range of alcohol content for other two Takju, where the alcohol contents were exceeded -1.1%. The average precision (%RSD) of 14 Takju analyzed by the distillation/hydrometry technique (36.2%) and the GC method (12.8%), confirming that the GC method was better than the other. The improved GC method was evaluated to be effective in managing and improving the alcohol content standard of Takju with the wide range of alcohol content.

The Application Methods of FarmMap Reading in Agricultural Land Using Deep Learning (딥러닝을 이용한 농경지 팜맵 판독 적용 방안)

  • Wee Seong Seung;Jung Nam Su;Lee Won Suk;Shin Yong Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs established the FarmMap, an digital map of agricultural land. In this study, using deep learning, we suggest the application of farm map reading to farmland such as paddy fields, fields, ginseng, fruit trees, facilities, and uncultivated land. The farm map is used as spatial information for planting status and drone operation by digitizing agricultural land in the real world using aerial and satellite images. A reading manual has been prepared and updated every year by demarcating the boundaries of agricultural land and reading the attributes. Human reading of agricultural land differs depending on reading ability and experience, and reading errors are difficult to verify in reality because of budget limitations. The farmmap has location information and class information of the corresponding object in the image of 5 types of farmland properties, so the suitable AI technique was tested with ResNet50, an instance segmentation model. The results of attribute reading of agricultural land using deep learning and attribute reading by humans were compared. If technology is developed by focusing on attribute reading that shows different results in the future, it is expected that it will play a big role in reducing attribute errors and improving the accuracy of digital map of agricultural land.

Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model (앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발)

  • Seong-Ju Cho;Woo-seok Choi;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.383-400
    • /
    • 2023
  • Air pollution-related diseases are escalating worldwide, with the World Health Organization (WHO) estimating approximately 7 million annual deaths in 2022. The rapid expansion of industrial facilities, increased emissions from various sources, and uncontrolled release of odorous substances have brought air pollution to the forefront of societal concerns. In South Korea, odor is categorized as an independent environmental pollutant, alongside air and water pollution, directly impacting the health of local residents by causing discomfort and aversion. However, the current odor management system in Korea remains inadequate, necessitating improvements. This study aims to enhance the odor management system by analyzing 1,010,749 data points collected from odor sensors located in Osong, Chungcheongbuk-do, using an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model. The research results demonstrate that the model based on the XGBoost algorithm exhibited superior performance, with an RMSE of 0.0096, significantly outperforming the single-region model (0.0146) with a 51.9% reduction in mean error size. This underscores the potential for increasing data volume, improving accuracy, and enabling odor prediction in diverse regions using a unified model through the standardization of odor concentration data collected from various regions.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

A study on the Revitalization of Traditional Market with Smart Platform (스마트 플랫폼을 이용한 전통시장 활성화 방안 연구)

  • Park, Jung Ho;Choi, EunYoung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.127-143
    • /
    • 2023
  • Currently, the domestic traditional market has not escaped the swamp of stagnation that began in the early 2000s despite various projects promoted by many related players such as the central government and local governments. In order to overcome the crisis faced by the traditional market, various R&Ds have recently been conducted on how to build a smart traditional market that combines information and communication technologies such as big data analysis, artificial intelligence, and the Internet of Things. This study analyzes various previous studies, users of traditional markets, and application cases of ICT technology in foreign traditional markets since 2012 and proposes a model to build a smart traditional market using ICT technology based on the analysis. The model proposed in this study includes building a traditional market metaverse that can interact with visitors, certifying visits to traditional markets through digital signage with NFC technology, improving accuracy of fire detection functions using IoT and AI technology, developing smartphone apps for market launch information and event notification, and an e-commerce system. If a smart traditional market platform is implemented and operated based on the smart traditional market platform model presented in this study, it will not only draw interest in the traditional market to MZ generation and foreigners, but also contribute to revitalizing the traditional market in the future.

Prediction of Dormant Customer in the Card Industry (카드산업에서 휴면 고객 예측)

  • DongKyu Lee;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In a customer-based industry, customer retention is the competitiveness of a company, and improving customer retention improves the competitiveness of the company. Therefore, accurate prediction and management of potential dormant customers is paramount to increasing the competitiveness of the enterprise. In particular, there are numerous competitors in the domestic card industry, and the government is introducing an automatic closing system for dormant card management. As a result of these social changes, the card industry must focus on better predicting and managing potential dormant cards, and better predicting dormant customers is emerging as an important challenge. In this study, the Recurrent Neural Network (RNN) methodology was used to predict potential dormant customers in the card industry, and in particular, Long-Short Term Memory (LSTM) was used to efficiently learn data for a long time. In addition, to redefine the variables needed to predict dormant customers in the card industry, Unified Theory of Technology (UTAUT), an integrated technology acceptance theory, was applied to redefine and group the variables used in the model. As a result, stable model accuracy and F-1 score were obtained, and Hit-Ratio proved that models using LSTM can produce stable results compared to other algorithms. It was also found that there was no moderating effect of demographic information that could occur in UTAUT, which was pointed out in previous studies. Therefore, among variable selection models using UTAUT, dormant customer prediction models using LSTM are proven to have non-biased stable results. This study revealed that there may be academic contributions to the prediction of dormant customers using LSTM algorithms that can learn well from previously untried time series data. In addition, it is a good example to show that it is possible to respond to customers who are preemptively dormant in terms of customer management because it is predicted at a time difference with the actual dormant capture, and it is expected to contribute greatly to the industry.