• Title/Summary/Keyword: improved algorithm

Search Result 4,961, Processing Time 0.03 seconds

Adaptive reversible image watermarking algorithm based on DE

  • Zhang, Zhengwei;Wu, Lifa;Yan, Yunyang;Xiao, Shaozhang;Gao, Shangbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1761-1784
    • /
    • 2017
  • In order to improve the embedding rate of reversible watermarking algorithm for digital image and enhance the imperceptibility of the watermarked image, an adaptive reversible image watermarking algorithm based on DE is proposed. By analyzing the traditional DE algorithm and the generalized DE algorithm, an improved difference expansion algorithm is proposed. Through the analysis of image texture features, the improved algorithm is used for embedding and extracting the watermark. At the same time, in order to improve the embedding capacity and visual quality, the improved algorithm is optimized in this paper. Simulation results show that the proposed algorithm can not only achieve the blind extraction, but also significantly heighten the embedded capacity and non-perception. Moreover, compared with similar algorithms, it is easy to implement, and the quality of the watermarked images is high.

Stagewise Weak Orthogonal Matching Pursuit Algorithm Based on Adaptive Weak Threshold and Arithmetic Mean

  • Zhao, Liquan;Ma, Ke
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1343-1358
    • /
    • 2020
  • In the stagewise arithmetic orthogonal matching pursuit algorithm, the weak threshold used in sparsity estimation is determined via maximum iterations. Different maximum iterations correspond to different thresholds and affect the performance of the algorithm. To solve this problem, we propose an improved variable weak threshold based on the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the residual error value to control the weak threshold. When the residual value decreases, the threshold value continuously increases, so that the atoms contained in the atomic set are closer to the real sparsity value, making it possible to improve the reconstruction accuracy. In addition, we improved the generalized Jaccard coefficient in order to replace the inner product method that is used in the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the covariance to replace the joint expectation for two variables based on the generalized Jaccard coefficient. The improved generalized Jaccard coefficient can be used to generate a more accurate calculation of the correlation between the measurement matrixes. In addition, the residual is more accurate, which can reduce the possibility of selecting the wrong atoms. We demonstrate using simulations that the proposed algorithm produces a better reconstruction result in the reconstruction of a one-dimensional signal and two-dimensional image signal.

ICAIM;An Improved CAIM Algorithm for Knowledge Discovery

  • Yaowapanee, Piriya;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2029-2032
    • /
    • 2004
  • The quantity of data were rapidly increased recently and caused the data overwhelming. This led to be difficult in searching the required data. The method of eliminating redundant data was needed. One of the efficient methods was Knowledge Discovery in Database (KDD). Generally data can be separate into 2 cases, continuous data and discrete data. This paper describes algorithm that transforms continuous attributes into discrete ones. We present an Improved Class Attribute Interdependence Maximization (ICAIM), which designed to work with supervised data, for discretized process. The algorithm does not require user to predefine the number of intervals. ICAIM improved CAIM by using significant test to determine which interval should be merged to one interval. Our goal is to generate a minimal number of discrete intervals and improve accuracy for classified class. We used iris plant dataset (IRIS) to test this algorithm compare with CAIM algorithm.

  • PDF

A New Fast Motion Estimation Algorithm Based on Block Sum Pyramid Algorithm

  • Jung, Soo-Mok
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • In this paper, a new fast motion estimation algorithm which is based on the Block Sum Pyramid Algorithm(BSPA) is presented. The Spiral Diamond Mesh Search scheme and Partial Distortion Elimination scheme of Efficient Multi-level Successive Elimination Algorithm were improved and then the improved schemes were applied to the BSPA. The motion estimation accuracy of the proposed algorithm is nearly 100% and the cost of Block Sum Pyramid Algorithm was reduced in the proposed algorithm. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Scene-based Nonuniformity Correction for Neural Network Complemented by Reducing Lense Vignetting Effect and Adaptive Learning rate

  • No, Gun-hyo;Hong, Yong-hee;Park, Jin-ho;Jhee, Ho-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.81-90
    • /
    • 2018
  • In this paper, reducing lense Vignetting effect and adaptive learning rate method are proposed to complement Scribner's neural network for nuc algorithm which is the effective algorithm in statistic SBNUC algorithm. Proposed reducing vignetting effect method is updated weight and bias each differently using different cost function. Proposed adaptive learning rate for updating weight and bias is using sobel edge detection method, which has good result for boundary condition of image. The ordinary statistic SBNUC algorithm has problem to compensate lense vignetting effect, because statistic algorithm is updated weight and bias by using gradient descent method, so it should not be effective for global weight problem same like, lense vignetting effect. We employ the proposed methods to Scribner's neural network method(NNM) and Torres's reducing ghosting correction for neural network nuc algorithm(improved NNM), and apply it to real-infrared detector image stream. The result of proposed algorithm shows that it has 10dB higher PSNR and 1.5 times faster convergence speed then the improved NNM Algorithm.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

Wavelet image coding using an improved zerotree-structure (개선된 제로트리 구조를 이용한 웨이브릿 기반의 영상 부호화)

  • 한명수;정영훈;김재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.743-746
    • /
    • 2001
  • An improved zerotree-structure based wavelet coding algorithm is proposed. When the descendants of a significant coefficient are all zerotree, its four-childs are coded respectively in conventional EZW. But in the proposed algorithm, a new symbol is assigned for the significant coefficient. Entropy for both methods are analyzed and new coding scheme is proposed. The experimental results show that the Proposed algorithm has a better performance than the original EZW algorithm.

  • PDF

An improved ellipsoid algorithm for LMI feasibility problems (LMI 가능성 문제를 위한 타원 알고리즘의 개선)

  • Bahng, Dane;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.188-192
    • /
    • 2002
  • The ellipsoid algorithm solves some feasibility(or optimization) problems with LMI(Linear Matrix Inequality) constraint in polynomial time. Recently, it has been replaced by interior point algorithm due to its slow convergence and incapability of verifying feasibility. This paper proposes a method to improve its convergence by using the deep-cut method of linear programming. Simulation results show that the improved algorithm is more effective than the original one.

  • PDF