Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
Korean Journal of Radiology
/
제24권4호
/
pp.294-304
/
2023
Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.
건설기술의 발달을 통하여 재개발 사업, 도로의 지하화, 지하철 증설, 광역철도 등 다양한 공사가 이루어지고 있다. 하지만 이것 때문에 기존에 형성된 도심지와 인근 지역에서의 공사들도 증가함에 따라 주변 인접 건물과 주민들의 피해와 분쟁 사례의 증가는 물론 기존 건축물의 노후화로 인한 안전사고 발생 또한 증가하고 있다. 본 연구에서는 디지털 데이터를 그래픽 프로그램에 적용하여 균열의 생성, 길이와 폭의 증진 등을 사진 촬영 이미지를 통해 비교하여 이에 대한 정도를 수치로 제시하여 균열에 대한 진전을 객관화하고자 하였다. 프로그램 적용을 통하여 기존 현장 조사의 단점으로 언급되던 균열 변화 여부의 주관적 판단에 따른 오류를 해결하였다. 이를 통해 사용 과정에서의 보완 및 개선 사항을 적용한다면 신뢰성이 향상되어 건축물 진단 과정에 보편적으로 사용될 수 있을 것으로 예상한다. 후속 연구로 디지털 그래픽 데이터 프로그램의 추출 알고리즘을 적용하여 전처리 작업에 사람이 개입하지 않는 것과 자체적으로 균열의 길이와 폭을 계산하고, 건축물의 전체적인 변화를 점검할 수 있는 후속 연구가 필요할 것으로 판단된다.
여름철 냉동기가 건물의 주 에너지 소비자로 고려됨에 따라 효율적인 냉동기 운영은 매우 중요한 문제로 고려된다. 그러나, 건물의 냉방수요가 건물 내외부 환경, 건물 재실자의 행동 등의 여러 요인에 의해 변동하고 냉동기의 가동제약조건으로 인해 현재 시점의 운영이 미래 시점의 운영에 제약을 발생시킴에 따라 건물의 냉방수요를 정확하게 만족하도록 냉동기를 운영하는 것은 어렵다. 본 연구에서는 이러한 문제를 해결하기 위해 냉동기의 최소가동시간을 고려한 심층 강화학습 기반의 다중 냉동기 운영 모델을 제안한다. 제안한 모델은 외기 정보와 냉방시스템 내부 정보로 구성된 상태에 따른 냉동기 운영 조합이 갖는 가치를 학습하고 실현 가능한 냉동기 운영 중 건물의 냉방수요와 냉동기에 의한 공급 부하 간의 차이를 최소화할 수 있는 냉동기 운영 조합을 결정한다. 냉동기의 최소가동시간 제약을 고려한 훈련 알고리즘을 적용하여 제안한 모델의 현실 적용 가능성을 높였으며 실제 국내 A대학교의 데이터를 바탕으로 실험한 결과, 제안한 다중 냉동기 운영 모델이 최소가동시간을 준수함과 동시에 건물 냉방 부하와의 차이 측면에서 A대학교의 기존 냉동기 운영 로직보다 우수한 성능을 보임을 확인하였다.
퇴적물 내에서 가스 하이드레이트(gas hydrate, GH) 부존 가능성을 파악하기 위해서는 획득된 코어 시료의 광물 조성을 아는 것이 필수적이다. GH 탐사를 진행하며 채취된 울릉분지 코어 시료에서 각 시료 별 488개의 X선 회절 분석(X-ray diffraction, XRD)을 활용하여 광물 조성 값을 확보하였다. 488개의 학습 자료를 기반으로 입력값을 3100개의 XRD 피크 세기로 출력값을 12개의 광물 조성으로 기계학습을 수행하였다. 488개의 데이터를 307개의 학습자료, 132개의 검증자료, 49개의 테스트 자료로 나누어 학습을 수행하였고 랜덤 포레스트(random forest, RF) 알고리즘을 활용하여 결과를 획득하였다. 학습 결과 전문가가 예측한 광물 조성과 기계학습을 통해 예측한 값의 차이인 평균 절대 오차(mean absolute error, MAE)가 1.35%로 확인되었다. 개발된 모델 성능의 개선을 위해 주성분분석(principal component analysis, PCA)을 활용하여 XRD 피크의 핵심 특징을 추출하여 입력자료의 차원을 줄여 추가적으로 기계학습을 수행한 결과 MAE 값이 최대 1.23%까지 감소하는 것을 볼 수 있었고 시간적인 측면에서 학습 효율도 향상된 것을 확인할 수 있었다.
본 연구에서는 수확벌채에 따른 수목의 뿌리 점착력의 변화와 토양의 포화를 가정한 지표유출의 세 가지 흐름 기법(SFD; Single flow direction, MFD; Multiple flow direction, IFD; Infinite flow direction)을 무한사면 안전율 공식에 적용하여 산사태 발생 예측 모델링의 정확성을 분석하였다. 이를 위해 2020년 8월 집중호우의 영향으로 자연사면과 벌채사면에서 다수의 산사태가 발생한 제천지역을 연구지역으로 선정하였다. 위성영상과 25cm급 항공사진을 이용한 산사태 인벤토리 맵핑 결과, 연구지역 내에서 총 830개소의 산사태 발생원이 확인되었다. 산사태 모델링 결과, 벌채에 따른 뿌리 점착력의 변화를 고려한 경우(MFD: 0.81, IFD: 0.80, SFD: 0.80)가 벌채의 영향을 고려하지 않은 경우(MFD: 0.79, IFD: 0.79, SFD: 0.78)에 비하여 AUROC(Area Under the Receiver Operating Characteristics) 분석에서 정확성이 1.3~2.6% 향상되는 것으로 나타났다. 또한, MFD 알고리즘을 이용한 경우는 다른 알고리즘과 비교하여 AUROC 분석에서 정확성이 최대 1.3% 향상되었다. 이러한 결과는 식생조건의 변화를 고려한 뿌리 점착력의 차등 적용과 지표유출수 흐름기법의 선정이 산사태 예측 모델링에 영향을 미칠 수 있음을 시사한다. 향후 이 연구의 결과는 현지 수문모니터링과 함께 수종별 뿌리 점착력의 특징 및 변화를 고려하여 검증되어야 할 것이다.
고고 자료의 기록방식이 아날로그 기록에서 디지털로 전환되면서 3D 스캐닝 기술의 도입은 본격화되었다. 현재 3D스캔과 사진측량을 이용한 고고 자료의 디지털 기록에 대한 연구와 도입은 지속적으로 이루어지고 있다. 하지만 비용, 인력 문제 등으로 인해 대부분의 매장문화재 기관에서는 적극적인 디지털 기술의 도입을 주저하고 있다. 본고는 3D 스캔 방식 중 효율성이 가장 높다고 평가되는 사진측량 기술을 이용하여 오픈소스 소프트웨어를 활용한 유물의 디지털 실측 방법을 제시하고자 한다. 유물의 디지털 실측 절차는 크게 3D 모델 획득, 3D 모델 편집 및 입단면도 제작, 전자도면 작성의 세 단계로 이루어진다. 디지털 기술 적용의 접근성을 살펴보기 위해 전 과정은 오픈소스 소프트웨어만을 이용하였다. 연구 결과 정량적 평가에서 실제 유물과 3D 모델의 수치 데이터 간 계측의 편차가 크지 않았다. 또한, 오픈소스 소프트웨어와 상용 소프트웨어 간 정량적 품질 비교분석 결과 유사도가 높았다. 다만 데이터 처리시간은 상용 소프트웨어의 성능이 우위에 있었다. 이는 지속적인 알고리즘 개선으로 인한 연산속도 향상의 결과로 판단된다. 정성적 평가에서는 메시 및 텍스처 품질의 차이가 일부 발생하였다. 오픈소스 소프트웨어로 생성된 3D 모델은 메시표면에 노이즈가 다수 발생하거나 메시의 표면이 부드럽지 않고 유물의 제작흔, 문양의 표현을 확인하기 어려웠다. 하지만 일부 프로그램에서 정량적·정성적 평가에서 상용 소프트웨어에 견줄 만한 품질을 획득할 수 있었다. 3D 모델 편집을 위한 오픈소스 소프트웨어에서는 사진실측 결과물의 후처리, 정합, 병합뿐만 아니라 유물 실측에 필요한 스케일 조정, 입단면도 제작 및 이미지 렌더링까지 가능하였다. 이후 오픈소스 캐드 프로그램에서 트레이싱하여 최종 도면을 완성하였다. 고고학 연구에서 사진실측의 적용은 발굴과정부터 보고서 작성 그리고 3D 모델 데이터의 수치정보를 이용한 연구 등 활용 가능성이 매우 높다. 컴퓨터 비전의 획기적인 발전으로 오픈소스 소프트웨어의 종류도 다양해졌고 성능도 상당부분 개선된 것으로 확인되었다. 누구나 쉽게 디지털 기술의 적용이 가능한 현재 고고 자료의 3D 모델 데이터의 획득은 문화유산의 보존과 연구 활성화를 위한 기초자료로 활용될 수 있다.
인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.
목 적: 방사선치료에서 CT number에 의해 나타나는 조직의 묘사 및 전자밀도는 CT(Computed Tomography)기반의 전산화치료계획 정확성을 보장하는데 중요한 역할을 한다. 하지만 체내의 금속 이식물은 CT number의 정확성을 감소시킬 뿐 아니라 조직 묘사에 대한 불확실성을 나타내기 때문에 임상에서는 metal artifact를 감소시킬 수 있는 알고리즘이 개발되었다. 이에 본 연구에서는 본원에서 사용하고 있는 GE사의 SMART MAR의 CT number 정확도를 평가하고 방사선치료에서의 유용성에 대해 평가하고자 한다. 대상 및 방법: 영상평가를 위해 CIRS ED phantom을 이용하여 6개 조직의 rod를 삽입하여 동일한 체적의 ROI를 형성 후 original 영상을 획득하고 의료용 티타늄 rod를 삽입하여 non-SMART MAR 영상과 SMART MAR영상을 획득하여 CT number와 SD값을 비교하였다. Metal artifact로 인해 CT number 변화에 따른 선량변화 확인을 위해 전산화계획시스템 Epclipse를 사용하여 CIRS ED phantom CT 영상에 PTV를 형성하여 original 영상을 획득하고 편측 티타늄 삽입, 양측 티타늄 삽입 영상을 획득하여 non-SMART MAR와 SMART MAR영상에 동일한 치료계획을 수립하여 PTV가 받는 평균처방선량, HI(Homogeneity Index), CI(Conformity Index)를 비교, 분석하였다. 흡수선량 측정은 원통형 아크릴 팬텀과 0.125 cc ionchamber, electrometer를 이용하여 선량변환상수(cCy/nC)를 계산하고 CIRS phantom을 이용하여 편측, 양측 티타늄 rod를 삽입한 영상으로 non-SMART MAR와 SMART MAR 영상을 획득하여 동일한 지점에서의 흡수선량을 측정하여 전산화치료계획상의 point dose와 비교하였다. 결 과: 영상평가 결과 CT number는 non-SMART MAR영상보다 SMART MAR 영상이 original영상에 더 유사한 값이 나왔고 SD값은 SMART MAR영상에서 더 감소되었다. 선량평가 결과 평균처방선량과 HI 및 CI 값은 SMART MAR 영상보다 non-SMART MAR 영상이 original 영상에 더 근접한 결과가 나왔지만 통계적으로 유의하지 않았다. 흡수선량 측정결과 치료계획상의 point dose와 실제 흡수선량과의 차이가 non-SMART MAR의 영상에서는 각각 2.69, 3.63 %의 차이가 있었지만 SMART MAR영상에서는 0.56, 0.68 %로 감소하였다. 결 론: 금속 이식물을 삽입한 환자의 CT 영상에 SMART MAR를 적용했을 때 CT number 정확성 상승 및 SD 감소로 영상의 질이 향상되므로 종양과 정상조직의 윤곽도 생성 및 선량계산 시 유용할 것으로 사료된다.
목적: 부채살 단일광자단층촬영(SPECT)은 공간분해능과 민감도를 개선하는 것으로 알려져 있다. 보다 정확한 영상을 얻고 인체에 대한 SPECT의 영상화 과정을 정확하게 묘사하기 위하여 평행 데이터로 재배열하는 과정 없이 직접 부채살 데이터를 이용하여 재구성하는 알고리즘이 필요하다. 본 연구는 다양한 부채살 재구성 알고리즘을 구현하였고 각 방법의 성능을 비교하였다. 대상 및 방법: 선추적법을 적용하여 부채살 투사기와 이로부터 얻은 데이터를 직접 재구성할 수 있는 FBP, EM, OS-EM과 MAP-EM OSL 알고리즘을 구현하였다. OSL 알고리즘의 경우에는 membrane과 thin plate prior를 사용하였다. 직접 부채살 데이터를 재구성하는 방법의 성능을 평가하기 위해 양방향 최근접 이웃, 양방향 1차와 양방향 3차 보간법을 사용하여 재배열된 평행 데이터를 얻었고 이 데이터를 기존의 평행 데이터에 대한 EM 알고리즘을 사용하여 재구성하였다. Hoffman 두뇌와 Shepp/Logan 팬텀으로부터 얻은 잡음 없는 데이터와 잡음 있는 데이터는 각 방법으로 재구성하였으며 퍼센트 오차를 계산하여 각 재구성된 영상을 비교하였다. 결과: Thin-plate 사전 분포함수를 사용한 OSL 방법이 가장 낮은 오차를 가지며 잡음으로 인한 결과 영상의 불안정성을 효과적으로 제어함을 확인할 수 있었다. 부채살 데이터를 평행 데이터로 재배열시 양방향 1차 보간법이 정확성과 계산 시간 측면에서 가장 효율적인 방법임을 확인하였다. 재배열된 평행 데이터의 EM결과에 비해 직접 부채살 데이터를 재구성하여 얻은 결과영상이 더 정확하게 재구성되었다. 결론: 본 연구에서는 평행 데이터로 재배열한 경우에 비하여 보다 정확한 영상을 재구성하는 직접 부채살 재구성 알고리즘을 구현하였으며 이는 정량적으로 월등히 개선된 결과를 제공함을 확인하였다.
IMRT, 양성자 치료와 같이 방사선 치료 기술이 발전할수록 치료 시 환자의 위치를 확인하고 그 정확성을 평가하는 기술의 중요성이 강조되고 있다. 현재 국립암센터 양성자치료센터에 설치되어 있는 양성자 치료기의 단순 X-선 영상시스템을 이용하여 콘빔 CT (cone-beam CT) 3차원 영상을 획득, 영상유도 방사선 치료의 가능성을 확인하고자 하였다. 양성자 치료기에 설치되어있는 X-선 영상시스템(SDD: 2,108 mm, SOD: 1,511 mm, Varian a277 x-ray tube & Varian Paxscan 4030: a-Si+DRZ screen)을 이용하여 양성자 갠트리를 $2^{\circ}$씩 회전시켜가면서 기하학적인 오차 측정을 위한 팬톰과 인체 팬톰 (Humanoid phantom, Rando, CA, USA)의 투사영상을 획득하였다. 현재 시스템적으로 연속적인 회전과 영상획득이 지원되지 않아서 영상획득 후 갠트리를 회전하는 방법으로 투사영상을 획득하였다. 기하학적 오차측정을 위한 팬텀과 두경부 팬텀에 대해서 $360^{\circ}$를 회전하며 180장의 투사영상($2,304{\times}3,200$, 14 bit with 127${\mu}m$ pixel pitch)을 관전압 85 kVp, 관전류 80 mA, 조사시간 0.5 s의 조건으로 촬영하였다. 콘빔 CT 영상재구성을 위해 Ram-Lak filter를 적용한 Feldkamp cone-beam 알고리즘을 사용하였으며, 획득한 180장의 투사영상을 사용하여 $0.4{\times}0.4{\times}0.4mm^3$의 voxel size를 가진 $512{\times}512{\times}512$ CT영상을 재구성하였다. 기하학적인 오차 측정방법을 통해 X-선 선원, 검출기와 갠트리의 기하학적 정보를 측정하였다. 측정된 결과에 의하면 검출기가 $0.25^{\circ}$ 회전된 오차를 보이는 것을 발견하였다. 기하학적 교정으로 재구성된 콘빔 CT 영상을 multi-planar view (axial, sagittal and coronal view) 및 3차원 영상으로 재구성하여 비교 평가 하였다. 현재 양성자치료기에 설치되어있는 단순 X-선 영상 시스템에서 기하학적 오차 측정을 위한 볼 팬텀을 이용하여 시스템의 오차를 측정하였다. 측정한 오차를 바탕으로 기하학적 교정을 통해서 두경부 및 복부 팬텀에 대한 3차원 영상인 콘빔 CT 영상들을 재구성하였다. 추후 연속적인 회전을 통한 영상획득이 가능하게 된다면, 보다 정확하고 신속한 영상재구성이 가능 하며 콘빔 CT가 영상유도 양성자 치료에 매우 유용할 것으로 사려된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.