• Title/Summary/Keyword: improve regularization method

Search Result 35, Processing Time 0.024 seconds

A Spline-Regularized Sinogram Smoothing Method for Filtered Backprojection Tomographic Reconstruction

  • Lee, S.J.;Kim, H.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.311-319
    • /
    • 2001
  • Statistical reconstruction methods in the context of a Bayesian framework have played an important role in emission tomography since they allow to incorporate a priori information into the reconstruction algorithm. Given the ill-posed nature of tomographic inversion and the poor quality of projection data, the Bayesian approach uses regularizers to stabilize solutions by incorporating suitable prior models. In this work we show that, while the quantitative performance of the standard filtered backprojection (FBP) algorithm is not as good as that of Bayesian methods, the application of spline-regularized smoothing to the sinogram space can make the FBP algorithm improve its performance by inheriting the advantages of using the spline priors in Bayesian methods. We first show how to implement the spline-regularized smoothing filter by deriving mathematical relationship between the regularization and the lowpass filtering. We then compare quantitative performance of our new FBP algorithms using the quantitation of bias/variance and the total squared error (TSE) measured over noise trials. Our numerical results show that the second-order spline filter applied to FBP yields the best results in terms of TSE among the three different spline orders considered in our experiments.

  • PDF

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

Shape from Shading using the Hierarchical basis Function and Multiresolution Images (계층적 기저함수와 다해상도 영상을 이용한 영사응로부터 물체의 형상복구)

  • 이승배;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.73-84
    • /
    • 1992
  • In this paper, an algorithm for recovering the 3-D shape from a single shaded image is proposed. In the proposed algorithm, by using the relation between the height and surface gradient (p, q), a set of linear equations is derived from the linearized reflectance function. Then the 3-D surface is recovered by employing the conjugate gradient technique. In order to improve the convergence speed of the solution, we also employ the hierarchical basis function and multiresolution images in the algorithm. A method for determining the regularization parameter, which is determined by trial and error in the conventional approach, is also introduced. In addition, the proposed algorithm attempts to recover the 3-D surface without requiring the boundary conditions, making it suitable for a real-time implementation. Simulation results for real image as well as synthetic image are provided to demonstrate the performance of the proposed algorithm.

  • PDF

TECHNIQUE OF EXTRACTING BUILDING BOUNDARIES FROM SEGMENTED ALS POINTS

  • Lee, Jeong-Ho;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.

  • PDF

An Theoretical Investigation on the Minimization of Birefringence Distribution in Optical Disk Substrate (광디스크 기판 성형시 발생하는 복굴절의 최소화를 위한 이론적 연구)

  • 김종성;강신일
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage density using short wavelength laser are being developed. The birefringence distribution is regarded as one of the most important optical properties for optical disk. In the present study, the birefringence distrubution is calculated using the Leonov model for viscoelastic constitutive equations and Cross/WLF model for viscosity approximation. The effects of processing conditions upon the development of birefringence discosity approximation. The effects of processing conditions upon the development of birefringence distribution in the optical disk were examined theoretically. It was found that the values of the birefringence distributions were very sensitive to the mold wall temperature history which minimizes the birefringence distribution. The analytical results showed the possibility of improving mechanical and optical properties in the optical disk substrates by active control of the mold wall temperature history.

  • PDF

Identification of prestress force in a prestressed Timoshenko beam

  • Lu, Z.R.;Liu, J.K.;Law, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.241-258
    • /
    • 2008
  • This paper presents a new identification approach to prestress force. Firstly, a bridge deck is modeled as a prestressed Timoshenko beam. The time domain responses of the beam under sinusoidal excitation are studied based on modal superposition. The prestress force is then identified in the time domain by a system identification approach incorporating with the regularization of the solution. The orthogonal polynomial function is used to improve the noise effect and obtain the derivatives of modal responses of the bridge. Good identification results are obtained from only the first few measured modal data under both sinusoidal and impulsive excitations. It is shown that the proposed method is insensitive to the magnitude of force to be identified and can be successfully applied to indirectly identify the prestress force as well as other physical parameters, such as the flexural rigidity and shearing rigidity of a beam even under noisy environment.

Acoustic holography for an engine radiation noise using equivalent sources (등가음원을 이용한 엔진 방사 소음의 음향 홀로그래피에 대한 연구)

  • Jeon, In-Youl;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1101-1106
    • /
    • 2004
  • This study presents the reconstruction of sound field radiated from an automotive engine using equivalent sources. Basic concept of the method presented is to replace the engine noise source with elementary sources of multipoles, e.g., monopoles and dipoles. The so-called Helmholtz equation least-squares (HELS) method can reconstruct the sound radiation fields from spherical geometries in a series expansion of spherical Hankel functions and spherical harmonics. In this paper, multi-Point, multipole equivalent sources are employed to reconstruct the sound field radiated from an automotive engine with a fixed rotation speed. To ensure and improve the accuracy of reconstruction, the spatial filters of multipole coefficients and wave-vectors are adopted for suppressing the adverse effect of high-order multipoles. Optimal filter shapes are designed with regularization parameters minimizing the generalized cross validation (GCV) function between actual and reproduced model. After regeneration of field pressures using the proposed method as many as necessary, the vibro-acoustic field of an engine could be reconstructed by using the BEM-based near-field acoustic holography (NAH) technique in a cost-effective manner.

  • PDF

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.