• Title/Summary/Keyword: implicit analysis method

Search Result 413, Processing Time 0.027 seconds

Geometric Implicit Function Modeling and Analysis Using R-functions (R-function을 이용한 형상의 음함수 모델링 및 해석)

  • Shin, Heon-Ju;Sheen, Dong-Woo;Kim, Tae-Wan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.220-232
    • /
    • 2007
  • Current geometric modeling and analysis are commonly based on B-Rep modeling and a finite elements method respectively. Furthermore, it is difficult to represent an object whose material property is heterogeneous using the B-Rep method because the B-Rep is basically used for homogeneous models. In addition, meshes are required to analyze a property of a model when the finite elements method is applied. However, the process of generating meshes from B-Rep is cumbersome and sometimes difficult especially when the model is deformed as time goes by because the topology of deforming meshes are changed. To overcome those problems in modeling and analysis including homogeneous and heterogeneous materials, we suggest a unified modeling and analysis method based on implicit representation of the model using R-function which is suggested by Rvachev. For implicit modeling of an object a distance field is approximated and blended for a complex object. Using the implicit function mesh-free analysis is possible where meshes are not necessary. Generally mesh-free analysis requires heavy computational cost compared to a finite elements method. To improve the computing time of function evaluation, we utilize GPU programming. Finally, we give an example of a simple pipe design problem and show modeling and analysis process using our unified modeling and analysis method.

2-D Consolidation Numerical Analysis of Multi_Layered Soils (II) (다층 지반의 2차원 압밀 수치해석 II)

  • 류권일;김팔규;구기욱;남상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.665-672
    • /
    • 2000
  • The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D,M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground Explicit method is simple for analysis algorithm and convenient for use except for applying the operator Crank-Nicolson method represents implicit method, which have different analysis method according to weighting factor. This method uses different algorithm according to dimension. And, this paper uses alternative direction implicit method. The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

FE Analysis of Lower Arm Hydroforming by Implicit and Explicit Method (Explicit/Implicit FEM에 의한 Lower Arm Hydroforming 공정해석)

  • Kang, Young-Ho;Kim, Jeong;Chang, You-Chul;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.783-788
    • /
    • 2000
  • Hydroforming is a method for forming circular tubes. If this technology is to be applied economically, it is essential to have knowledge of the avoidance of failure cases as well as of the behavior of the tube in the tool under the compressive stress and forces that are exerted by the machine. A finite element simulation for manufacturing of lower arm from straight tubes, using the hydroforming method, was performed to investigate the effects of varying process parameters. Explicit method is used to simulate hydroforming in many cases, but that is not included flow rule. And then it needs simulation for implicit method. It was simulated by two methods, implicit and explicit, to compare the result of the hydroforming.

  • PDF

2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method (부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석)

  • Im, Dong-Kyun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1153-1161
    • /
    • 2010
  • An efficient solution method for harmonic balance techniques with Fourier transform is presented for periodic unsteady flow problems. The present partially-implicit harmonic balance treats the flux terms implicitly and the harmonic source term is solved explicitly. The convergence of the partially Implicit method is much faster than the explicit Runge-Kutta harmonic balance method. The method does not need to compute the additional flux Jacobian matrix from the implicit harmonic source term. Compared with fully implicit harmonic balance method, this partial approach turns out to have good convergence property. Oscillating flows over NACA0012 airfoil are considered to verify the method and to compare with results of explicit R-K(Runge-Kutta) and dual time stepping methods.

Improving the Subject Independent Classification of Implicit Intention By Generating Additional Training Data with PCA and ICA

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.

Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations (원자로 동특성 방정식의 수치해석에 관한 연구)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.98-109
    • /
    • 1983
  • A two-step alternating direction explicit method is developed to solve the space-dependent reactor kinetics equations in two space dimensions. As a special case in the general class of alternating direction implicit methods, this method is analysed for accuracy and stability. To test the validity of this method it is compared with the implicit-difference method used in the TWIGL program. It is shown that the two methods are closely related. The time dependent neutron fluxes of the pressurized water reactor (PWR), during control rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident, are obtained from the numerical calculation results.

  • PDF

Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis (FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법)

  • Kim, Tae-Gyu;Choi, Jung-Kil;Hong, Jun-Pyo;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis (효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법)

  • Kang, K.H.;Moon, S.Y.;Noh, J.H.;Won, S.H.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF