• Title/Summary/Keyword: implicit Euler method

Search Result 51, Processing Time 0.023 seconds

Numerical Analysis of 3-Dimensional Unsteady Flow Around the High Speed Train (고속으로 주행하는 열차 주위의 3차원 비정상 유동장 해석)

  • Ha, Seong-Do
    • 연구논문집
    • /
    • s.27
    • /
    • pp.15-34
    • /
    • 1997
  • The 3-dimensional unsteady compressible flows around the high speed train have been simulated for the train entering a tunnel and for passing another train. The simulation method employs the implicit approximation-factorization finite difference algorithm for the inviscid Euler equations in general curvilinear coordinates. A moving grid scheme is applied in order to resolve the train movement relative to the tunnel and the other train. The velo-city and pressure fields and pressure drag are calculated to study the effects of tunnel and the other train. The side directional force which is time dependent is also computed for the passing train. Pressure distribution shows that the compression wave is generated in front of the train noise just after the tunnel entrance and proceeds along the inside of tunnel.

  • PDF

A New Numerical Method for Solving Differential Equation by Quadratic Approximation (포물선 근사법에 의한 상태방정식의 새로운 수치해석적 접근법에 관한 연구)

  • Lee, Jong-Gi;Kwon, Yong-Jun;Choi, Byoung-Kon;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.107-109
    • /
    • 2003
  • 전력계통의 과도 안정도 해석의 접근방법에는 SI(Simultaneous Implicit)법과 PE(Partitioned Explicit)법 두 가지방법을 사용해오고 있다. SI법에는 Trapezoidal법 등이 있고, PE법에는 Runge-Kutta법, Euler법등이 사용되고 있다. SI법인 Trapezoidal법은 PE법의 Runge-Kutta법 또는 Euler법에 비해 시간간격을 크게 해서 계산속도를 줄일 수 있다는 장점이 있지만, 정화도면에서는 신뢰한 수 없는 단점이 있다. 이 논문에서는 포물선 사법을 이용하여 Trapezoidal법의 정확도를 개선학 수 있는 방법을 제시하고 명확한 수학적 증명을 통해 타당성을 보여준다. 연속함수와 불연속함수에 대해서 Runge-Kutta법과 Trapezoidal법과 제안한 방법을 적용시켜서 제안한 방법의 정화함을 보여준다.

  • PDF

A Study on Delay and Modification in Predicting Turbulence Flow in PISG Algorithm (PISO 알고리즘에서 난류예측의 후생성과 보완에 대한 연구)

  • Lee J. W.;Ryou H. S.;Kang K. G.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • In this paper, a modification of PISO algorithm based on standard k-ε turbulence model was proposed. The numerical technique used in this research is finite volume method, hybrid scheme for discretizing convection term, Euler implicit scheme for discretizing time term, and non-staggered grid. The basic idea of the modification of PISO algorithm is to perform an additional corrector stage for turbulence kinetic energy and dissipation rate to correct the inconsistence of flow and turbulence. In order to validate this algorithm, simulation of flow around a square cylinder (Re=3000) was performed in two-dimensional case. The results obtained from the proposed scheme show better agreement with those from the experiment than using original PISO algorithm in coherent velocity field.

Proper Numerical Scheme to Solve the Flow Past a Circular Cylinder with Time and Grid Size Variations (시간과 격자 크기 변화에 따른 원주후류해석의 경제적 수치기법)

  • Maeng, Joo-Sung;Kim, Yong-Dae;Choi, IL-Kon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.652-659
    • /
    • 2000
  • The purpose of this study is to present the most effective numerical scheme to calculate the unsteady flows. In order to calculate the flow quantities of flow past a circular cylinder, Three-time level and five convective schemes are applied to unsteady and convective terms, respectively. The values obtained are compared with those from the existing experimental and numerical studies. At Reynolds numbers up to 160, time intervals can be expanded 10 times of Implicit Euler scheme using Three-time level method, and it is found that QUICK and CUI schemes work much stable than others even if less grid density conditions. The combination of Three-time level and QUICK scheme gives high resolutions for laminar unsteady problems with PC level.

A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines

  • Seong, Young-sik;Han, Seong-hoon;Kim, Kui-soon;Park, Chang-kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.391-397
    • /
    • 2004
  • The performance characteristics of partial admission supersonic turbines are analyzed by using the commercial CFD program FLUENT6.0. The governing equations were discretized with Euler implicit method in time and 2nd-order upwind scheme of FVM in space. The k-$\varepsilon$ turbulence model was utilized to describe the turbulent flow field. In order to investigate the nozzle--rotor interactions and the effect of partial admission, the flows in supersonic turbine rotor cascades with a nozzle are computed. Extensive computations of partial admission supersonic turbines provide the shock structures and flow patterns in the nozzle and rotor. It is clearly shown that the nozzle flow is highly affected by the shocks or expansion waves propagated from the rotor leading edge. And the rotor flow is also affected by the shocks or wakes originated from the nozzle.

  • PDF

A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations (다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발)

  • Yoon, J.H.;Huh, H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines (부분입사형 초음속 터빈의 노즐과 익렬의 상호작용에 관한 연구)

  • Seong Young-Sik;Han Seong-Hoon;Kim Kui-Soon;Park Chang-Kyoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.53-60
    • /
    • 2004
  • In order to investigate the nozzle - rotor interactions and the effect of partial admission, the flows in supersonic turbine rotor cascades with a nozzle have been computed. Extensive computations of partial admission supersonic turbines provide the shock structures and flow patterns in the nozzle and rotor. The governing equations were discretized with Euler implicit method in time and 2nd-order upwind scheme of FVM in space. The $\kappa$-$\varepsilon$ turbulence model was utilized to describe the turbulent flow field. It is clearly shown that the nozzle flow is highly affected by the shocks or expansion waves propagated from the rotor leading edge. And the rotor flow is also affected by the shocks or wakes originated from the nozzle.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.