• Title/Summary/Keyword: implications

Search Result 18,527, Processing Time 0.047 seconds

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction (Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Seo, Jinny
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.73-95
    • /
    • 2021
  • This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.

A Study on Traditional Ideology and the 'Tradition' of the Theatre company Minye in 1970s (1970년대 전통 이념과 극단 민예극장의 '전통')

  • Kim, Ki-Ran
    • Journal of Popular Narrative
    • /
    • v.26 no.3
    • /
    • pp.45-86
    • /
    • 2020
  • In this article, the "modernization of the tradition" constructed on the cultural politics and the way in which it appropriated in the korean theatre in the 1970s were analyzed. It is trying to reveal its implications. It is also a work to critically review the aspects of self-censorship in the korean theatre in the 70s. To that end, we looked at the theatre company Minye Theatre, which preoccupied the traditional discussions in the 1970s by creating national dramas. Until now, the evaluation of the theatre company Minye Theatre in the 1970s has focused on the achievement on the directing of Heo Gyu, who promoted the succession and transformation of tradition. However, the traditional ideology constructed in the state-led cultural politics in the 70s and the way in which it was operated cannot be evaluated only in terms of artistic achievement. The ideology of tradition is selected according to the selective criteria of the subject to appropriate tradition. What's important is that certain objects are excluded, discarded, re-elected, re-interpreted and re-recognized in the selection process of selected traditional ideology. This is the situation in the '70s, when tradition was constantly re-recognized amid differences between the decadent and the disorder that were then designated as non-cultural, and led to a new way of appropriate. The nation-led traditional discussion of the '70s legalized the tradition with stable values, one of the its way was the national literary and artistic support. Under the banner of modernization of tradition, theatre company Minye preoccupied the discussions on the tradition and presented folk drama as a new theatre. As an alternative to the crisis of korean theatre at the time, the Minye chose the method of inheriting and transforming tradition. It is noteworthy that Heo Gyu, the representative director of the theatre company Minye, recognized the succession and transformation of traditional performance as both a calling and an experiment. For Heo Gyu, tradition was accepted as an irresistible stable value and an unquestionable calling, and as a result, his performance, filled with excessive traditional practices, became overambitious, especially when it failed to reflect the present-here reality, the repeated use of traditional expression tools resulted in skilled craftsmanship, not artistic creation. The traditional ideology of the 70s unfolds in a new aspect of appropriation in the 80s. In 1986, Son Jin-Cheok, Kim Seong-nyeo, and Yoon Mun-sik, who were key members of the theatre company Minye Theatre, left the theatre to create the theatre company Michu, and secured popularity through Madangnori(popular folk yard theatre). Son Jin-Cheok's Madangnori is overbearing through satire and humor. It gained popularity by criticizing and mocking state power. On the other hand, not only the form of traditional performance, but also the university-centered Madanggeuk movement, which appropriated on the spirit of resistance from the people to its traditional values, has rapidly grown. In the field of traditional discussions of the 70s, Madanggeuk was self-born through appropriation in which the spirit of resistance of the people is used as a traditional value. Madanggeuk as well as Michu that achieved the popularization of Madangnori cannot be discussed solely by the artistic achievement of the modernization of tradition. Critics of korean theatre in response to state-led traditional discussions in the 70s was focused only on the qualitative achievement of performing arts based on artistry. I am very sorry for that. As a result, the popular resistance of the Madanggeuk and the Madangnori were established in the 'difference' with the traditions of the theatre company Minye Theatre. Theatre company Minye Theatre was an opportunity for the modernization of tradition, but the fact that it did not continuously produce significant differences. This is the meaning and limitation of the "tradition" of the theatre company Minye Theatre in the history of korean theatre in the 1970s.

In-service teacher's perception on the mathematical modeling tasks and competency for designing the mathematical modeling tasks: Focused on reality (현직 수학 교사들의 수학적 모델링 과제에 대한 인식과 과제 개발 역량: 현실성을 중심으로)

  • Hwang, Seonyoung;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.381-400
    • /
    • 2023
  • As the era of solving various and complex problems in the real world using artificial intelligence and big data appears, problem-solving competencies that can solve realistic problems through a mathematical approach are required. In fact, the 2015 revised mathematics curriculum and the 2022 revised mathematics curriculum emphasize mathematical modeling as an activity and competency to solve real-world problems. However, the real-world problems presented in domestic and international textbooks have a high proportion of artificial problems that rarely occur in real-world. Accordingly, domestic and international countries are paying attention to the reality of mathematical modeling tasks and suggesting the need for authentic tasks that reflect students' daily lives. However, not only did previous studies focus on theoretical proposals for reality, but studies analyzing teachers' perceptions of reality and their competency to reflect reality in the task are insufficient. Accordingly, this study aims to analyze in-service mathematics teachers' perception of reality among the characteristics of tasks for mathematical modeling and the in-service mathematics teachers' competency for designing the mathematical modeling tasks. First of all, five criteria for satisfying the reality were established by analyzing literatures. Afterward, teacher training was conducted under the theme of mathematical modeling. Pre- and post-surveys for 41 in-service mathematics teachers who participated in the teacher training was conducted to confirm changes in perception of reality. The pre- and post- surveys provided a task that did not reflect reality, and in-service mathematics teachers determined whether the task given in surveys reflected reality and selected one reason for the judgment among five criteria for reality. Afterwards, frequency analysis was conducted by coding the results of the survey answered by in-service mathematics teachers in the pre- and post- survey, and frequencies were compared to confirm in-service mathematics teachers' perception changes on reality. In addition, the mathematical modeling tasks designed by in-service teachers were evaluated with the criteria for reality to confirm the teachers' competency for designing mathematical modeling tasks reflecting the reality. As a result, it was shown that in-service mathematics teachers changed from insufficient perception that only considers fragmentary criterion for reality to perceptions that consider all the five criteria of reality. In particular, as a result of analyzing the basis for judgment among in-service mathematics teachers whose judgment on reality was reversed in the pre- and post-survey, changes in the perception of in-service mathematics teachers was confirmed, who did not consider certain criteria as a criterion for reality in the pre-survey, but considered them as a criterion for reality in the post-survey. In addition, as a result of evaluating the tasks designed by in-service mathematics teachers for mathematical modeling, in-service mathematics teachers showed the competency to reflect reality in their tasks. However, among the five criteria for reality, the criterion for "situations that can occur in students' daily lives," "need to solve the task," and "require conclusions in a real-world situation" were relatively less reflected. In addition, it was found that the proportion of teachers with low task development competencies was higher in the teacher group who could not make the right judgment than in the teacher group who could make the right judgment on the reality of the task. Based on the results of these studies, this study provides implications for teacher education to enable mathematics teachers to apply mathematical modeling lesson in their classes.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

The Effect of Curiosity and Need for Uniqueness on Emotional Responses to Art Collaborated Products including Moderating Effect of Gender (독특성 추구성향과 호기심이 아트 콜라보레이션 제품에 대한 소비자의 감정에 미치는 영향: 성별에 따른 조절효과)

  • Ju, Seon Hee;Koo, Dong-Mo
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.97-125
    • /
    • 2012
  • Companies recently introduce art collaborated products incorporating culture into a product. Art collaborated products include incorporating famous movies and/or design of an artist into a newly launched product. The introduction of art collaborated products are gradually increasing. However, research for this trend is relatively scarce. Although research concerning design has discussed a number of different factors as playing a role in influencing responses to design including culture, fashion, innate preferences, etc.), only limited attention has been paid to the processes by which consumers generate responses to product designs. People with different characteristics may respond differently. When people encounter these art products, they may become curious, may think that these products are unique, novel and innovative. People tend to show different levels of curiosity when they encounter new and novel objects, which they have rarely seen or experienced. Curiosity is defined as a desire for acquiring new knowledge and new sensory experience. Previous studies demonstrated that curiosity motivates individuals to engage in exploratory behaviors. People also show different levels of need for uniqueness, which is defined as being different from others or becoming distinctive among a larger group. Individual's need for uniqueness results from signals conveyed by the material objects that individuals choose to display. Recently, researcher have developed the need for uniqueness with three distinct constructs. These three concepts include creative choice, unpopular choice, and avoidance of similarity. Creative choice is a trait tendency of an individual by expressing or differentiating himself from others through consumptions of unique products. Unpopular choice is related to an individual's tendency to consume products, which deviates from group norms. Avoidance of similarity is linked to the avoidance of consumption behavior of products that are not famous. Past research implies that people with different levels of need for uniqueness show different motivational processes. Previous research also demonstrates that different customer emotions may be derived when consumers are exposed to these art collaborated products. Research tradition has been investigated three different emotional responses such as pleasure, arousal, and dominance. Pleasure is defined as the degree to which a person feels good, joyful, happy, or satisfied in a situation. Arousal is defined as the extent to which a person feels stimulated, active, or excited. Dominance is defined as the extent that a person feels powerful vis-a-vis the environment that surrounds him/her. Previous research show that complex, speedy, and surprising stimuli may excite consumers and thus make them more pleased and engaged in their approach behavior. However, the current study identified these emotional responses as positive emotion, negative emotion, and arousal. These derived emotions may lead consumers to approach and/or avoidance behaviors. In addition, males and females tend to respond differently when they are exposed to art collaboration products. Building on this research tradition, the current study aims to investigate the inter-relationships between individual traits such as curiosity and need for uniqueness and individual's emotional responses including positive and negative emotion and arousal when people encounter various art collaborated products. Emotional responses are proposed to influence purchase intention. Additionally, previous studies show that male and females respond differently to similar stimuli. Accordingly, gender difference are proposed to moderate the links between individual traits and emotional responses. These research aims of the current study may contribute to extending our knowledge in terms of (1) which individual characteristics are related to different emotions, and (2) how these different emotional responses inter-connected to future purchase intention of arts collaborated products. In addition, (3) the different responses to these arts collaborated products by males and females will guide managers how to concoct different strategies to these segments. The questionnaire for the present study was adopted from the previous literature and validated with a pilot test. The survey was conducted in Daegu, a third largest city in South Korea, for three weeks during June and July 2011. Most respondents were in their twenties and thirties. 350 questionnaires were distributed and among them 300 were proved to be valid (valid response rate of 85.7%). Survey questionnaires from valid 300 respondents are used to test hypotheses proposed. The structural equation model (SEM) was used to validate the research model. The measurement and structural model was tested using LISREL 8.7. The measurement model test demonstrated that consistency, convergent validity, and discriminat validity of the measurement items were acceptable. The results from the structural model demonstrate that curiosity has a positive impact on positive emotion, but not on negative emotion and arousal. Need for uniqueness has three different sub-concepts such as creative choice, unpopular choice, and avoidance of similarity. The results show that creative choice has a positive effect on arousal and positive emotion, but has a negative impact on negative emotion. Unpopular choice has a positive effect on arousal, but on neither positive nor negative emotions. Avoidance of similarity has no impact on neither emotions nor arousal. The results also demonstrated that gender has a moderating influence. Males show more negative emotion to creative and unpopular choices. Implications and future research directions are discussed in conclusion.

  • PDF

A Study on the Market Structure Analysis for Durable Goods Using Consideration Set:An Exploratory Approach for Automotive Market (고려상표군을 이용한 내구재 시장구조 분석에 관한 연구: 자동차 시장에 대한 탐색적 분석방법)

  • Lee, Seokoo
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.157-176
    • /
    • 2012
  • Brand switching data frequently used in market structure analysis is adequate to analyze non- durable goods, because it can capture competition between specific two brands. But brand switching data sometimes can not be used to analyze goods like automobiles having long term duration because one of main assumptions that consumer preference toward brand attributes is not changed against time can be violated. Therefore a new type of data which can precisely capture competition among durable goods is needed. Another problem of using brand switching data collected from actual purchase behavior is short of explanation why consumers consider different set of brands. Considering above problems, main purpose of this study is to analyze market structure for durable goods with consideration set. The author uses exploratory approach and latent class clustering to identify market structure based on heterogeneous consideration set among consumers. Then the relationship between some factors and consideration set formation is analyzed. Some benefits and two demographic variables - age and income - are selected as factors based on consumer behavior theory. The author analyzed USA automotive market with top 11 brands using exploratory approach and latent class clustering. 2,500 respondents are randomly selected from the total sample and used for analysis. Six models concerning market structure are established to test. Model 1 means non-structured market and model 6 means market structure composed of six sub-markets. It is exploratory approach because any hypothetical market structure is not defined. The result showed that model 1 is insufficient to fit data. It implies that USA automotive market is a structured market. Model 3 with three market structures is significant and identified as the optimal market structure in USA automotive market. Three sub markets are named as USA brands, Asian Brands, and European Brands. And it implies that country of origin effect may exist in USA automotive market. Comparison between modal classification by derived market structures and probabilistic classification by research model was conducted to test how model 3 can correctly classify respondents. The model classify 97% of respondents exactly. The result of this study is different from those of previous research. Previous research used confirmatory approach. Car type and price were chosen as criteria for market structuring and car type-price structure was revealed as the optimal structure for USA automotive market. But this research used exploratory approach without hypothetical market structures. It is not concluded yet which approach is superior. For confirmatory approach, hypothetical market structures should be established exhaustively, because the optimal market structure is selected among hypothetical structures. On the other hand, exploratory approach has a potential problem that validity for derived optimal market structure is somewhat difficult to verify. There also exist market boundary difference between this research and previous research. While previous research analyzed seven car brands, this research analyzed eleven car brands. Both researches seemed to represent entire car market, because cumulative market shares for analyzed brands exceeds 50%. But market boundary difference might affect the different results. Though both researches showed different results, it is obvious that country of origin effect among brands should be considered as important criteria to analyze USA automotive market structure. This research tried to explain heterogeneity of consideration sets among consumers using benefits and two demographic factors, sex and income. Benefit works as a key variable for consumer decision process, and also works as an important criterion in market segmentation. Three factors - trust/safety, image/fun to drive, and economy - are identified among nine benefit related measure. Then the relationship between market structures and independent variables is analyzed using multinomial regression. Independent variables are three benefit factors and two demographic factors. The result showed that all independent variables can be used to explain why there exist different market structures in USA automotive market. For example, a male consumer who perceives all benefits important and has lower income tends to consider domestic brands more than European brands. And the result also showed benefits, sex, and income have an effect to consideration set formation. Though it is generally perceived that a consumer who has higher income is likely to purchase a high priced car, it is notable that American consumers perceived benefits of domestic brands much positive regardless of income. Male consumers especially showed higher loyalty for domestic brands. Managerial implications of this research are as follow. Though implication may be confined to the USA automotive market, the effect of sex on automotive buying behavior should be analyzed. The automotive market is traditionally conceived as male consumers oriented market. But the proportion of female consumers has grown over the years in the automotive market. It is natural outcome that Volvo and Hyundai motors recently developed new cars which are targeted for women market. Secondly, the model used in this research can be applied easier than that of previous researches. Exploratory approach has many advantages except difficulty to apply for practice, because it tends to accompany with complicated model and to require various types of data. The data needed for the model in this research are a few items such as purchased brands, consideration set, some benefits, and some demographic factors and easy to collect from consumers.

  • PDF

An Exploratory Study on Marketing of Financial Services Companies in Korea (한국 금융회사 마케팅 현황에 대한 탐색 연구)

  • Chun, Sung Yong
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.111-133
    • /
    • 2010
  • Marketing financial services used to be easier. Today, the competition in financial services is fierce. Not only has the competition become more intense, financial services have also changed structurally. In an environment with various customer needs and severe competitions, the marketing in financial services industry is getting more difficult and more important than before. However, there are still not enough studies on financial services marketing in Korea whereas lots of research papers have been published frequently in some international journals. The purpose of this paper is (1)to review the literature on financial services marketing, (2)to investigate current marketing activities based on in-depth interview with financial marketing managers in Korea, and (3)to suggest some implications for future research on the financial services marketing. Financial products are not consumer products. In fact, they are not products at all in the way product marketing is usually described. Nor are they altogether like services. The financial industry operates in a unique way, and its marketing tasks are correspondingly complex. However, the literature review shows that there has been a lack of basic studies which dealt with inherent characteristics of financial services marketing compared to the research on marketing in other industries. Many studies in domestic marketing journals have so far focused only on the general customer behaviors and the special issues in some financial industries. However, for more effective financial services marketing, we have to answer following questions. Is there any difference between financial service marketing and consumer packaged goods marketing? What are the differences between the financial services marketing and other services marketing such as education and health services? Are there different ways of marketing among banks, securities firms, insurance firms, and credit card companies? In other words, we need more detailed research as well as basic studies about the financial services marketing. For example, we need concrete definitions of financial services marketing, bank marketing, securities firm marketing, and etc. It is also required to compare the characteristics of each marketing within the financial services industry. The products sold in each market have different characteristics such as duration and degree of risk-taking. It means that there are sub-categories in financial services marketing. We have to consider them in the future research on the financial services marketing. It is also necessary to study customer decision making process in the financial markets. There have been little research on how customers search and process information, compare alternatives, make final decision, and repeat their choices. Because financial services have some unique characteristics, we need different understandings in the customer behaviors compared to the behaviors in other service markets. And also considering the rapid growth in financial markets and upcoming severe competition between domestic and global financial companies, it is time to start more systematic and detailed research on financial services marketing in Korea. In the second part of this paper, I analyzed the results of in-depth interview with 20 marketing managers of financial services companies in Korea. As a result, I found that the role of marketing departments in Korean financial companies are mainly focused on the short-term activities such as sales support, promotion, and CRM data analysis although the size and history of marketing departments to some extent show a sign of maturity. Most companies established official marketing departments before 2001. Average number of employees in a marketing department is about 58. However, marketing managers in eight companies(40% of the sample) still think that the purpose of marketing is only to support and manage general sales activities. It shows that some companies have sales-oriented concept rather than marketing-oriented concept. I also found three key words which marketing managers think importantly in financial services markets. They are (1)Trust in customer relationship, (2)Brand differentiation, and (3)Rapid response to customer needs. 50% of the sample support that "Trust" is the most important key word in the financial services marketing. It is interesting that 80% of banks and securities companies think that "Trust" is the most important thing, whereas managers in credit card companies consider "Rapid response to customer needs" as the most important key word in their market. In addition, there are different problems recognition of marketing managers depending on the types of financial industries they belong to. For example, in the case of banks and insurance companies, marketing managers consider "a lack of communication with other departments" as the most serious problem. On the other hand, in the case of securities firms, "a lack of utilization of customer data" is the most serious problem. These results imply that there are different important factors for the customer satisfaction depending on the types of financial industries, and managers have to consider them when marketing financial products in more effective ways. For example, It will be necessary for marketing managers to study different important factors which affect customer satisfaction, repeat purchase, degree of risk-taking, and possibility of cross-selling according to the types of financial industries. I also suggested six hypothetical propositions for the future research.

  • PDF